Difference between revisions of "Scilab/C4/ODE-Euler-methods/Gujarati"
From Script | Spoken-Tutorial
Jyotisolanki (Talk | contribs) (Created page with "{| Border=1 |'''Time''' |'''Narration''' |- | 00:01 |નમસ્તે મિત્રો, |- | 00:02 | ''' Euler Methods''' નો ઉપયોગ કરીને ODEs...") |
Jyotisolanki (Talk | contribs) |
||
Line 54: | Line 54: | ||
|- | |- | ||
| 00:48 | | 00:48 | ||
− | | In '''Euler method,''' માં આપણને '''ODE.''' ના હલ નું we get an accurately approximate solution of the '''ODE.'''................ | + | | In '''Euler method,''' માં આપણને '''ODE.''' ના હલ નું we get an accurately approximate solution of the '''ODE.'''................ |
|- | |- | ||
|00:55 | |00:55 | ||
− | | | + | | આ ઇનીશીયલ વેલ્યુ પ્રોબ્લમસ ને હલ કરવા માટે ઉપયોગી છે જ્યાં '''differential equation''' ની ઇનીશીયલ વેલ્યુ આપેલ હોય છે. |
|- | |- | ||
|01:03 | |01:03 | ||
− | | | + | | આ '''continuous functions.''' ને હલ કરવા માટે ઉપયોગી છે. |
|- | |- | ||
Line 68: | Line 68: | ||
|01:08 | |01:08 | ||
− | | | + | | '''Euler method.''' ચાલો '''Euler method.''' મેથડ વાપરીને ઉદાહરણને હલ કરીએ. |
|- | |- | ||
|01:12 | |01:12 | ||
− | | | + | | આપણને એક ઇનીશીયલ વેલ્યુ પ્રોબ્લમ આપેલ છે. |
|- | |- | ||
Line 84: | Line 84: | ||
| 01:20 | | 01:20 | ||
− | || | + | || '''y''' ઇનીશીયલ વેલ્યુ '''minus one'''(-1) આપેલી છે. |
|- | |- | ||
Line 90: | Line 90: | ||
|01:25 | |01:25 | ||
− | || | + | || અને '''step length''' '''zero point one'''(0.1) આપેલ છે. |
|- | |- | ||
Line 96: | Line 96: | ||
|01:29 | |01:29 | ||
− | | | + | | આપણને ટાઈમ '''t equal to zero point five.''' પર '''y''' ની વેલ્યુ શોધવાની છે. |
|- | |- | ||
|01:36 | |01:36 | ||
− | | | + | | હવે '''Euler method.''' ના માટે કોડ જોઈએ. |
|- | |- | ||
Line 106: | Line 106: | ||
|01:39 | |01:39 | ||
− | | | + | | '''Scilab editor.''' પર 'Euler underscore o d e dot sci''' ખોલો. |
|- | |- |
Revision as of 15:27, 29 December 2015
Time | Narration |
00:01 | નમસ્તે મિત્રો, |
00:02 | Euler Methods નો ઉપયોગ કરીને ODEs હલ કરવા પરના પોકન ટ્યુટોરિયલમાં તમારું સ્વાગત છે. |
00:09 | આ ટ્યુટોરીયલ ના અંતે તમે શીખશો કેવી રીતે: |
00:12 | Scilab' માં Euler અને Modified Euler methods વાપરીને ODEs હલ કરતા. |
00:18 | ODEs હલ કરવા માટે Scilab કોડ બનાવતા. |
00:22 | આ ટ્યુટોરિયલ રિકોર્ડ કરવા માટે હું ઉપયોગ કરી રહી છું, |
00:25 | Scilab 5.3.3 વર્જન સાથે . |
00:28 | Ubuntu 12.04 ઓપરેટીંગ સીસ્ટમ |
00:32 | આ ટ્યુટોરિયલ ના અભ્યાસ માટે તમને |
00:34 | Scilab નું સમાન્ય જ્ઞાન હોવું જોઈએ. |
00:37 | અને ODEs. ને કેવી રીતે હલ કરાય તેની જાણ હોવી જોઈએ. |
00:40 | સાઈલેબ ને શીખવા માટે સ્પોકન ટ્યુટોરિયલ વેબ સાઈટ પર સાઈલેબ પર ઉપલબ્ધ સંબંધિત ટ્યુટોરિયલ જુઓ. |
00:48 | In Euler method, માં આપણને ODE. ના હલ નું we get an accurately approximate solution of the ODE................. |
00:55 | આ ઇનીશીયલ વેલ્યુ પ્રોબ્લમસ ને હલ કરવા માટે ઉપયોગી છે જ્યાં differential equation ની ઇનીશીયલ વેલ્યુ આપેલ હોય છે. |
01:03 | આ continuous functions. ને હલ કરવા માટે ઉપયોગી છે. |
01:08 | Euler method. ચાલો Euler method. મેથડ વાપરીને ઉદાહરણને હલ કરીએ. |
01:12 | આપણને એક ઇનીશીયલ વેલ્યુ પ્રોબ્લમ આપેલ છે. |
01:15 | y dash is equal to minus two t minus y. |
01:20 | y ઇનીશીયલ વેલ્યુ minus one(-1) આપેલી છે. |
01:25 | અને step length zero point one(0.1) આપેલ છે. |
01:29 | આપણને ટાઈમ t equal to zero point five. પર y ની વેલ્યુ શોધવાની છે. |
01:36 | હવે Euler method. ના માટે કોડ જોઈએ. |
01:39 | Scilab editor. પર 'Euler underscore o d e dot sci ખોલો. |
01:47 | We define the function Euler underscore o d e with arguments f, t init, y init, h and N |
01:58 | 'where: f denotes the function to be solved, |
02:01 | t init is the initial value of time t, |
02:05 | y init is the initial value of y, |
02:09 | h is the step length and n is the number of iterations. |
02:14 | Then we initialize the values of t and y to vectors of zeros. |
02:21 | We place the initial values of t and y in t of one and y of one respectively. |
02:29 | Then we iterate from one to N to find the value of y. |
02:33 | Here we apply Euler method to find the value of y. |
02:39 | Finally we end the function. |
02:42 | Save and execute the file Euler underscore o d e dot sci. |
02:49 | Switch to Scilab console to solve the example problem. |
02:54 | We define the function by typing |
02:56 | d e f f open parenthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to open parenthesis minus two asterisk t close parenthesis minus y close single quote close parenthesis |
03:26 | Press Enter. |
03:28 | Then type: t init is equal to zero. |
03:31 | Press Enter. |
03:33 | Type: y init is equal to minus one. |
03:38 | Press Enter . |
03:40 | Type: step length h is equal to zero point one. |
03:44 | Press Enter. |
03:46 | The step length is zero point one and we have to find the value of y at zero point five. |
03:53 | So, the number of iterations should be five. |
03:59 | At each iteration, the value of t will be increased by zero point one. |
04:05 | So type capital N is equal to five (N=5) |
04:09 | and press Enter. |
04:11 | To call the function, type: |
04:14 | open square bracket t comma y close square bracket equal to Euler underscore o d e open parenthesis f comma t init comma y init comma h comma capital N close parenthesis |
04:33 | Press Enter. |
04:35 | The value of y at t equal to zero point five is shown. |
04:41 | Now let us look at Modified Euler method. |
04:45 | It is a second order method and is a stable two step method. |
04:51 | We find the average of the function at the beginning and end of time step. |
04:56 | Let us solve this example using Modified Euler method. |
05:02 | We are given a function y dash is equal to t plus y plus t y. |
05:08 | The initial value of y is one |
05:12 | and the step length is zero point zero one. |
05:16 | We have to find the value of y at time t equal to zero point one using Modified Euler's method. |
05:25 | Let us look at the code for Modified Euler method on Scilab Editor. |
05:31 | We define the function with arguments f, t init, y init, h and n |
05:39 | where: f is the function to be solved, |
05:42 | t init is the intial time value, |
05:45 | y init is the inital value of y, |
05:49 | h is the step length and |
05:51 | N is the number of iterations. |
05:54 | Then we initialize the arrays for y and t. |
05:58 | We place the initial values of t and y in t of one and y of one respectively. |
06:07 | We implement Modified Euler Method here. |
06:11 | Here we find the average value of y at the beginning and end of time step. |
06:17 | Save and execute the file Modi Euler underscore o d e dot sci. |
06:23 | Switch to Scilab console. |
06:26 | Clear the screen by typing c l c. |
06:30 | Press Enter. |
06:32 | Define the function by typing d e f f open parenthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to t plus y plus t asterisk y close single quote close parenthesis |
07:01 | Press Enter. |
07:03 | Then type: t init equal to zero, press Enter. |
07:08 | Type: y init equal to one and press Enter. |
07:12 | Then type: h equal to zero point zero one press Enter. |
07:19 | Type: capital N equal to ten |
07:22 | since the number of iterations should be ten to time t equal to zero point one with step length of zero point zero one. |
07:34 | Press Enter. |
07:36 | Then call the function Modi Euler underscore o d e by typing: |
07:41 | open square bracket t comma y close square bracket equal to Modi Euler underscore o d e open parenthesis f comma t init comma y init comma h comma capital N close parenthesis |
08:03 | Press Enter. |
08:05 | The value of y at t equal to zero point one is shown. |
08:10 | Let us summarize this tutorial. |
08:14 | In this tutorial we have learnt to develop Scilab code for Euler and modified Euler methods. |
08:21 | We have also learnt to solve ODEs using these methods in Scilab. |
08:28 | Watch the video available at the link shown below. |
08:32 | It summarizes the Spoken Tutorial project. |
08:35 | If you do not have good bandwidth, you can download and watch it. |
08:40 | The spoken tutorial project Team: |
08:42 | Conducts workshops using spoken tutorials. |
08:45 | Gives certificates to those who pass an online test. |
08:49 | For more details, please write to contact@spoken-tutorial.org. |
08:55 | Spoken Tutorial Project is a part of the Talk to a Teacher project. |
09:00 | It is supported by the National Mission on Eduction through ICT, MHRD, Government of India. |
09:07 | More information on this mission is available at the link shown below. |
09:13 | This is Ashwini Patil, signing off. |
09:15 | Thank you for joining. |