Difference between revisions of "Scilab/C4/Linear-equations-Iterative-Methods/Kannada"
From Script | Spoken-Tutorial
Anjana310312 (Talk | contribs) |
Sandhya.np14 (Talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 10: | Line 10: | ||
|- | |- | ||
|00:14 | |00:14 | ||
− | | | + | | ‘ಇಟರೇಟಿವ್ ಮೆಥಡ್’ ಗಳನ್ನು ಬಳಸಿ, ‘ಲೀನಿಯರ್ ಇಕ್ವೇಶನ್’ ಗಳ ಸಿಸ್ಟಮ್ ನ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಹಾಗೂ |
|- | |- | ||
|00:18 | |00:18 | ||
Line 49: | Line 49: | ||
|- | |- | ||
|01:34 | |01:34 | ||
− | | | + | | ಉತ್ತರದ ಹತ್ತಿರ ಹತ್ತಿರ ಬರುವವರೆಗೂ, ಈ ಆವರ್ತನವನ್ನು ನಾವು ಮುಂದುವರಿಸುತ್ತೇವೆ. |
|- | |- | ||
| 01:39 | | 01:39 | ||
− | | | + | | ನಾವು ಜಕೋಬಿ ವಿಧಾನವನ್ನು ಬಳಸಿ, ಈ ಉದಾಹರಣೆಯನ್ನು ಸಾಲ್ವ್ ಮಾಡೋಣ. |
|- | |- | ||
| 01:44 | | 01:44 | ||
− | || | + | || ಜಕೋಬಿ ವಿಧಾನದ ಕೋಡ್ ಅನ್ನು ನೋಡೋಣ. |
|- | |- | ||
| 01:48 | | 01:48 | ||
− | || ನಾವು '''format''' ಮೆಥಡ್ ಅನ್ನು | + | || ಸೈಲ್ಯಾಬ್ ಕನ್ಸೋಲ್ ನಲ್ಲಿ ಪ್ರದರ್ಶಿಸಬೇಕಾದ ಉತ್ತರದ ಫಾರ್ಮ್ಯಾಟ್ ಅನ್ನು ಸೂಚಿಸಲು, ನಾವು '''format''' ಮೆಥಡ್ ಅನ್ನು ಬಳಸುತ್ತೇವೆ. |
|- | |- | ||
|01:56 | |01:56 | ||
− | || ಇಲ್ಲಿ '''e''' | + | || ಇಲ್ಲಿ '''e''', ಉತ್ತರವು ’scientific notation’ ನಲ್ಲಿ (ಸೈಂಟಿಫಿಕ್ ನೊಟೇಶನ್) ಇರಬೇಕೆಂದು ಸೂಚಿಸುತ್ತದೆ. |
|- | |- | ||
|02:01 | |02:01 | ||
− | | | + | |ಮತ್ತು, ಸಂಖ್ಯೆ ಇಪ್ಪತ್ತು (20), ಪ್ರದರ್ಶಿಸಬೇಕಾದ ಅಂಕಿಗಳನ್ನು ಸೂಚಿಸುತ್ತದೆ. |
|- | |- | ||
|02:06 | |02:06 | ||
Line 70: | Line 70: | ||
|- | |- | ||
|02:10 | |02:10 | ||
− | |' | + | |'ಕೊಇಫಿಶಿಯೆಂಟ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್' (coefficient matrix). |
|- | |- | ||
|02:12 | |02:12 | ||
Line 76: | Line 76: | ||
|- | |- | ||
|02:14 | |02:14 | ||
− | |'ಇನಿಶಿಯಲ್ | + | |'ಇನಿಶಿಯಲ್ ವ್ಯಾಲ್ಯೂಸ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
|- | |- | ||
| 02:17 | | 02:17 | ||
− | |'ಇಟರೇಷನ್ ಗಳ | + | |'ಇಟರೇಷನ್ ಗಳ ಗರಿಷ್ಠ ಸಂಖ್ಯೆ' ಮತ್ತು |
|- | |- | ||
| 02:19 | | 02:19 | ||
− | ||' ಕನ್ವರ್ಜೆನ್ಸ್ ಟಾಲರೆನ್ಸ್' - ಇವುಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು | + | ||' ಕನ್ವರ್ಜೆನ್ಸ್ ಟಾಲರೆನ್ಸ್' - ಇವುಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಪಡೆಯುವೆವು. |
|- | |- | ||
|02:22 | |02:22 | ||
− | || ನಂತರ ನಾವು ಮ್ಯಾಟ್ರಿಕ್ಸ್ A | + | || ನಂತರ ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ A, ‘ಸ್ಕ್ವೇರ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್’ ಆಗಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸಲು, '''size''' ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸುತ್ತೇವೆ. |
|- | |- | ||
|02:29 | |02:29 | ||
− | | ಅದು | + | | ಅದು ಹಾಗೆ ಆಗಿರದಿದ್ದರೆ, ಎರರ್ ಅನ್ನು ಡಿಸ್ಪ್ಲೇ ಮಾಡಲು, ನಾವು '''error''' ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸುತ್ತೇವೆ. |
− | + | |- | |
|02:34 | |02:34 | ||
− | | ನಂತರ ನಾವು ಮ್ಯಾಟ್ರಿಕ್ಸ್ '''A''' | + | | ನಂತರ ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ '''A''', 'ಡಯಾಗೊನಲಿ ಡಾಮಿನೆಂಟ್(diagonally dominant)' ಆಗಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. |
|- | |- | ||
| 02:40 | | 02:40 | ||
− | || | + | || ಮೊದಲನೆಯ ಆರ್ಧವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ ನ ಪ್ರತಿಯೊಂದು ‘ರೋ’ ದ ಮೊತ್ತವನ್ನು ಕಂಡುಹಿಡಿಯುತ್ತದೆ. |
|- | |- | ||
| 02:45 | | 02:45 | ||
− | | ನಂತರ | + | | ನಂತರ ಅದು, ‘ಡಯಾಗೊನಲ್ ಎಲಿಮೆಂಟ್’ ನ ಎರಡರಷ್ಟು, ಆ ‘ರೋ’ದ ಎಲಿಮೆಂಟ್ ಗಳ ಮೊತ್ತಕ್ಕಿಂತ ಹೆಚ್ಚು ಇದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತದೆ. |
|- | |- | ||
|02:54 | |02:54 | ||
− | | ಇಲ್ಲವಾದಲ್ಲಿ '''error''' ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸಿ, ಎರರ್ ಅನ್ನು ಡಿಸ್ಲ್ಪೇ | + | | ಇಲ್ಲವಾದಲ್ಲಿ, '''error''' ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸಿ, ಎರರ್ ಅನ್ನು ಡಿಸ್ಲ್ಪೇ ಮಾಡಲಾಗುತ್ತದೆ. |
|- | |- | ||
|03:01 | |03:01 | ||
− | | ನಂತರ ನಾವು, | + | | ನಂತರ ನಾವು, '''A, b, x zero, maximum iteration''' ಮತ್ತು |
|- | |- | ||
| 03:07 | | 03:07 | ||
− | | ''' | + | | '''tolerance level''' ಎಂಬ ‘ಇನ್ಪುಟ್ ಆರ್ಗ್ಯುಮೆಂಟ್’ ಗಳೊಂದಿಗೆ |
|- | |- | ||
| 03:09 | | 03:09 | ||
− | |''' | + | | '''Jacobi Iteration'''( ಜಕೋಬಿ ಇಟರೇಶನ್) ಎಂಬ ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ. |
|- | |- | ||
| 03:14 | | 03:14 | ||
− | |ಇಲ್ಲಿ, '''x zero''' | + | |ಇಲ್ಲಿ, '''x zero''', '''initial values matrix''' (ಇನಿಶಿಯಲ್ ವ್ಯಾಲ್ಯುಸ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ) ಆಗಿದೆ. |
|- | |- | ||
| 03:19 | | 03:19 | ||
− | | | + | | ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ '''A''' ಮತ್ತು '''initial values''' ಮ್ಯಾಟ್ರಿಕ್ಸ್ ನ ಸೈಜ್ ಪರಸ್ಪರ ಹೊಂದಿಕೆ ಆಗುತ್ತದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. |
|- | |- | ||
|03:28 | |03:28 | ||
− | | | + | | '''x k p one''' ಗಾಗಿ ವ್ಯಾಲ್ಯುವನ್ನು ಕಂಡುಹಿಡಿಯುತ್ತೇವೆ. ನಂತರ, '''relative error''', '''tolerance level''' ಗಿಂತ ಕಡಿಮೆ ಇದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. |
|- | |- | ||
| 03:38 | | 03:38 | ||
− | | ಅದು '''tolerance level''' ಗಿಂತ | + | | ಅದು '''tolerance level''' ಗಿಂತ ಕಡಿಮೆ ಇದ್ದರೆ, ನಾವು ಇಟರೇಷನ್ ಅನ್ನು '''break''' ಮಾಡುತ್ತೇವೆ ಮತ್ತು ಉತ್ತರವನ್ನು ರಿಟರ್ನ್ ಮಾಡುತ್ತೇವೆ. |
|- | |- | ||
| 03:45 | | 03:45 | ||
− | | | + | |ಕೊನೆಯದಾಗಿ, ಫಂಕ್ಷನ್ ಅನ್ನು '''end''' ಮಾಡುತ್ತೇವೆ. |
|- | |- | ||
| 03:48 | | 03:48 | ||
− | || ಈಗ ಫಂಕ್ಷನ್ ಅನ್ನು ಸೇವ್ ಮಾಡಿ ಎಕ್ಸಿಕ್ಯೂಟ್ ಮಾಡೋಣ. | + | || ಈಗ ಫಂಕ್ಷನ್ ಅನ್ನು ಸೇವ್ ಮಾಡಿ, ಎಕ್ಸಿಕ್ಯೂಟ್ ಮಾಡೋಣ. |
|- | |- | ||
|03:51 | |03:51 | ||
Line 133: | Line 133: | ||
|- | |- | ||
| 03:54 | | 03:54 | ||
− | | | + | | ಪ್ರತಿಯೊಂದು ಪ್ರಾಂಪ್ಟ್ ನಲ್ಲಿ ನಾವು ವ್ಯಾಲ್ಯೂಗಳನ್ನು ನಮೂದಿಸೋಣ. |
|- | |- | ||
| 03:57 | | 03:57 | ||
− | | '''coefficient matrix A | + | | '''coefficient matrix A''' ಅನ್ನು ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ: '''open square bracket two space one semi colon five space seven close square bracket '''. |
|- | |- | ||
|04:08 | |04:08 | ||
− | | | + | | '''Enter ''' ಅನ್ನು ಒತ್ತಿ. |
|- | |- | ||
| 04:10 | | 04:10 | ||
− | | ನಂತರ '''open square bracket eleven semicolon thirteen close square bracket''' | + | | ನಂತರ ಹೀಗೆ ಟೈಪ್ ಮಾಡುತ್ತೇವೆ: '''open square bracket eleven semicolon thirteen close square bracket''' |
|- | |- | ||
|04:17 | |04:17 | ||
Line 148: | Line 148: | ||
|- | |- | ||
|04:20 | |04:20 | ||
− | | '''initial values matrix | + | | '''initial values matrix''' ಅನ್ನು ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ: '''open square bracket one semicolon one close square bracket''' |
|- | |- | ||
| 04:28 | | 04:28 | ||
Line 154: | Line 154: | ||
|- | |- | ||
| 04:30 | | 04:30 | ||
− | |''' | + | |'''maximum number of iterations'''- ಇದು 25 ಆಗಿರಲಿ. |
|- | |- | ||
| 04:34 | | 04:34 | ||
− | |||
| '''Enter''' ಅನ್ನು ಒತ್ತಿ. | | '''Enter''' ಅನ್ನು ಒತ್ತಿ. | ||
|- | |- | ||
| 04:36 | | 04:36 | ||
− | | '''convergence tolerance level''' ಇದು '''zero point zero zero zero zero one ''' ಆಗಿರಲಿ. | + | | '''convergence tolerance level''': ಇದು '''zero point zero zero zero zero one ''' ಆಗಿರಲಿ. |
|- | |- | ||
| 04:44 | | 04:44 | ||
Line 167: | Line 166: | ||
|- | |- | ||
| 04:46 | | 04:46 | ||
− | ||ನಾವು, ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ | + | ||ನಾವು ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ, ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡುತ್ತೇವೆ: |
|- | |- | ||
| 04:48 | | 04:48 | ||
− | ||'''Jacobi Iteration open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis''' | + | ||'''Jacobi Iteration open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis''' |
|- | |- | ||
| 05:04 | | 05:04 | ||
Line 176: | Line 175: | ||
|- | |- | ||
| 05:06 | | 05:06 | ||
− | | 'ಕನ್ಸೋಲ್ ' ನಲ್ಲಿ '''x one''' ಮತ್ತು '''x two''' | + | | 'ಕನ್ಸೋಲ್ ' ನಲ್ಲಿ, '''x one''' ಮತ್ತು '''x two''' ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ತೋರಿಸಲಾಗಿದೆ. |
|- | |- | ||
|05:11 | |05:11 | ||
Line 182: | Line 181: | ||
|- | |- | ||
|05:14 | |05:14 | ||
− | | ಈಗ ನಾವು ' ಗಾಸ್ ಸೈಡಲ್ (Gauss Seidel)' ವಿಧಾನವನ್ನು ಕಲಿಯೋಣ. | + | | ಈಗ ನಾವು 'ಗಾಸ್ ಸೈಡಲ್ (Gauss Seidel)' ವಿಧಾನವನ್ನು ಕಲಿಯೋಣ. |
|- | |- | ||
| 05:19 | | 05:19 | ||
− | | ಇಲ್ಲಿ, | + | | ಇಲ್ಲಿ, ‘n’ ಇಕ್ವೇಷನ್ ಗಳು ಮತ್ತು ‘n’ ವೇರಿಯೇಬಲ್ ಗಳನ್ನು ಹೊಂದಿರುವ ಒಂದು ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಸಿಸ್ಟಮ್ ಅನ್ನು ಕೊಡಲಾಗಿದೆ. |
|- | |- | ||
|05:26 | |05:26 | ||
− | || ನಾವು ಈ ಇಕ್ವೇಷನ್ ಗಳನ್ನು | + | || ಪ್ರತಿಯೊಂದು ವೇರಿಯೇಬಲ್ ಗಾಗಿ, ನಾವು ಈ ಇಕ್ವೇಷನ್ ಗಳನ್ನು ಪುನಃ ಹೀಗೆ ಬರೆಯುತ್ತೇವೆ. |
|- | |- | ||
| 05:29 | | 05:29 | ||
− | | | + | | ಉಳಿದ ವೇರಿಯೇಬಲ್ ಗಳು ಮತ್ತು ಅವುಗಳ ಕೋಇಫಿಶಿಯೆಂಟ್ ಗಳನ್ನು, ಅದಕ್ಕೆ ಸಂಬಂಧಿತ ‘ರೈಟ್ ಹ್ಯಾಂಡ್ ಸೈಡ್ ಎಲಿಮೆಂಟ್’ನಿಂದ ಕಳೆಯುತ್ತೇವೆ (ಮೈನಸ್). |
|- | |- | ||
| 05:37 | | 05:37 | ||
− | | ನಂತರ ಇದನ್ನು ಆ | + | | ನಂತರ ಇದನ್ನು, ಆ ವೇರಿಯೇಬಲ್ ನ ಕೋಇಫಿಶಿಯೆಂಟ್ ಆಗಿರುವ ''' a i i ''' ನಿಂದ ಭಾಗಿಸುತ್ತೇವೆ. |
|- | |- | ||
| 05:45 | | 05:45 | ||
− | | | + | | ಕೊಟ್ಟಿರುವ ಪ್ರತಿಯೊಂದು ಇಕ್ವೇಷನ್ ಗೂ ಇದನ್ನೇ ಮಾಡಲಾಗುತ್ತದೆ. |
|- | |- | ||
| 05:49 | | 05:49 | ||
− | | | + | | ‘ಜಕೋಬಿ ಮೆಥಡ್’ ನಲ್ಲಿ, '''x of i k plus one''' ನ ಕಂಪ್ಯುಟೇಷನ್ ಗಾಗಿ, '''x of i k plus one ''' ದ ಹೊರತಾಗಿ, '''x of i k''' ದ ಎಲ್ಲಾ ಎಲಿಮೆಂಟ್ ಗಳನ್ನೂ ಬಳಸಲಾಗುತ್ತದೆ. |
|- | |- | ||
| 06:03 | | 06:03 | ||
− | | 'ಗಾಸ್ ಸೈಡಲ್ | + | | 'ಗಾಸ್ ಸೈಡಲ್ ಮೆಥಡ್’ ನಲ್ಲಿ, ನಾವು '''x of i k''' ದ ವ್ಯಾಲ್ಯುದ ಬದಲಾಗಿ '''x of i k plus one''' ದ ವ್ಯಾಲ್ಯುವನ್ನು ಬರೆಯುತ್ತೇವೆ. |
|- | |- | ||
| 06:12 | | 06:12 | ||
− | | | + | | ' ಗಾಸ್ ಸೈಡಲ್ ಮೆಥಡ್' ಅನ್ನು ಬಳಸಿ, ನಾವು ಈ ಉದಾಹರಣೆಯನ್ನು ಸಾಲ್ವ್ ಮಾಡೋಣ. |
|- | |- | ||
| 06:17 | | 06:17 | ||
− | | | + | | ಇದಕ್ಕಾಗಿ 'ಗಾಸ್ ಸೈಡಲ್ ಮೆಥಡ್' ನ ಕೋಡ್ ಅನ್ನು ನೋಡೋಣ. |
|- | |- | ||
| 06:21 | | 06:21 | ||
− | |ಇಲ್ಲಿ | + | |ಇಲ್ಲಿ ಮೊದಲನೆಯ ಸಾಲು, '''format''' ಮೆಥಡ್ ಅನ್ನು ಬಳಸಿ, ಸೈಲ್ಯಾಬ್ ಕನ್ಸೋಲ್ ನಲ್ಲಿ ತೋರಿಸಲಾಗುವ ಉತ್ತರದ ಫಾರ್ಮ್ಯಾಟ್ ಅನ್ನು ಸೂಚಿಸುತ್ತದೆ. |
|- | |- | ||
| 06:29 | | 06:29 | ||
− | | ನಂತರ ನಾವು '''input''' ಫಂಕ್ಷನ್ ಅನ್ನು | + | | ನಂತರ ನಾವು '''input''' ಫಂಕ್ಷನ್ ಅನ್ನು: |
|- | |- | ||
| 06:32 | | 06:32 | ||
− | | ' | + | | 'ಕೋಇಫಿಶಿಯೆಂಟ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
|- | |- | ||
| 06:34 | | 06:34 | ||
− | | 'ರೈಟ್ ಹ್ಯಾಂಡ್ ಸೈಡ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್ | + | | 'ರೈಟ್ ಹ್ಯಾಂಡ್ ಸೈಡ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
|- | |- | ||
| 06:36 | | 06:36 | ||
− | | ' | + | | ' ಇನಿಷಿಯಲ್ ವ್ಯಾಲ್ಯುಸ್ ಆಫ್ ವೇರಿಯೇಬಲ್ಸ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
|- | |- | ||
| 06:38 | | 06:38 | ||
− | | | + | | ಇಟರೇಷನ್ ಗಳ ಗರಿಷ್ಠ ಸಂಖ್ಯೆ ಮತ್ತು |
|- | |- | ||
| 06:40 | | 06:40 | ||
− | | ' ಟಾಲರೆನ್ಸ್ ಲೆವೆಲ್' ಇವುಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು | + | | ' ಟಾಲರೆನ್ಸ್ ಲೆವೆಲ್' ಇವುಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಪಡೆಯಲು ಬಳಸುತ್ತೇವೆ. |
|- | |- | ||
| 06:43 | | 06:43 | ||
− | | ನಂತರ ನಾವು, '''A comma b comma x zero comma max iterations''' | + | | ನಂತರ ನಾವು, '''Gauss Seidel''' ಎಂಬ ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ. ಇದು, '''A comma b comma x zero comma max iterations and tolerance level''' ಎಂಬ ‘ಇನ್ಪುಟ್ ಆರ್ಗ್ಯುಮೆಂಟ್’ ಗಳನ್ನು ಮತ್ತು '''solution''' ಎಂಬ ಔಟ್ಪುಟ್ ಆರ್ಗ್ಯುಮೆಂಟ್ ಅನ್ನು ಹೊಂದಿದೆ. |
|- | |- | ||
| 06:58 | | 06:58 | ||
− | | | + | | ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ A, ‘ಸ್ಕ್ವೇರ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್’ ಆಗಿದೆಯೇ ಮತ್ತು ‘ಇನಿಶಿಯಲ್ ವೆಕ್ಟರ್’ ಮತ್ತು ಮ್ಯಾಟ್ರಿಕ್ಸ್ A ಗಳು ಹೊಂದಿಕೆ ಆಗುತ್ತವೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. ಇದಕ್ಕಾಗಿ '''size''' ಮತ್ತು '''length''' ಫಂಕ್ಷನ್ ಗಳನ್ನು ಬಳಸುತ್ತೇವೆ. |
|- | |- | ||
| 07:10 | | 07:10 | ||
− | |ನಂತರ ನಾವು ಇಟರೇಷನ್ ಗಳನ್ನು | + | |ನಂತರ ನಾವು ಇಟರೇಷನ್ ಗಳನ್ನು ಪ್ರಾರಂಭಿಸುತ್ತೇವೆ. |
|- | |- | ||
| 07:13 | | 07:13 | ||
− | | | + | | '''initial values vector x zero''', '''x k''' ಗೆ ಸಮವಾಗಿದೆ ಎನ್ನುತ್ತೇವೆ. |
|- | |- | ||
| 07:19 | | 07:19 | ||
− | | | + | | ''' x k''' ದ ಸೈಜ್ ಅನ್ನು ಹೊಂದಿರುವ ಒಂದು '''matrix of zeros''' ಅನ್ನು ಕ್ರಿಯೇಟ್ ಮಾಡಿ, ಅದನ್ನು '''x k p one''' ಎನ್ನುತ್ತೇವೆ. |
|- | |- | ||
| 07:28 | | 07:28 | ||
− | |ನಾವು '''x k p one''' ಅನ್ನು ಬಳಸಿ | + | | ಪ್ರತಿಯೊಂದು ಇಕ್ವೇಷನ್ ನ ವೇರಿಯೇಬಲ್ ನ ವ್ಯಾಲ್ಯುವನ್ನು ಪಡೆಯಲು, ನಾವು '''x k p one''' ಅನ್ನು ಬಳಸಿ, ಆ ಇಕ್ವೇಷನ್ ಅನ್ನು ಸಾಲ್ವ್ ಮಾಡುತ್ತೇವೆ. |
|- | |- | ||
| 07:38 | | 07:38 | ||
− | | | + | |ಪ್ರತಿಯೊಂದು ಇಟರೇಷನ್ ನಲ್ಲಿ, '''x k p one''' ನ ವ್ಯಾಲ್ಯು, ಅಪ್ಡೇಟ್ ಆಗುತ್ತದೆ (ನವೀಕರಿಸಲಾಗುತ್ತದೆ). |
|- | |- | ||
| 07:44 | | 07:44 | ||
− | | | + | |ಅಲ್ಲದೇ, '''relative error''', ನಿಗದಿಪಡಿಸಲಾದ '''tolerance level''' ಗಿಂತ ಕಡಿಮೆ ಆಗಿದೆಯೇ ಎಂದು ನಾವು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. |
|- | |- | ||
| 07:50 | | 07:50 | ||
− | |ಅದು | + | |ಅದು ಕಡಿಮೆ ಆಗಿದ್ದಲ್ಲಿ, ನಾವು ಇಟರೇಷನ್ ಅನ್ನು '''break''' ಮಾಡುವೆವು. |
|- | |- | ||
| 07:54 | | 07:54 | ||
− | |ನಂತರ '''x k p one''' ಅನ್ನು '''solution''' ಎಂಬ ವೇರಿಯೇಬಲ್ ಗೆ | + | |ನಂತರ, '''x k p one''' ಅನ್ನು '''solution''' ಎಂಬ ವೇರಿಯೇಬಲ್ ಗೆ ಸಮನಾಗಿಸುತ್ತೇವೆ. |
|- | |- | ||
| 07:59 | | 07:59 | ||
− | | | + | |ಕೊನೆಯದಾಗಿ, ನಾವು ಫಂಕ್ಷನ್ ಅನ್ನು '''end''' ಮಾಡುತ್ತೇವೆ. |
|- | |- | ||
| 08:02 | | 08:02 | ||
− | | | + | | ನಾವು ಫಂಕ್ಷನ್ ಅನ್ನು ಸೇವ್ ಮಾಡಿ, ಎಕ್ಸಿಕ್ಯೂಟ್ ಮಾಡೋಣ. |
|- | |- | ||
| 08:06 | | 08:06 | ||
Line 275: | Line 274: | ||
|- | |- | ||
| 08:12 | | 08:12 | ||
− | | '''open square bracket two space one | + | | ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ: '''open square bracket two space one semicolon five space seven close square bracket'''. |
|- | |- | ||
| 08:21 | | 08:21 | ||
− | | '''Enter''' ಅನ್ನು ಒತ್ತಿ. ಮುಂದಿನ ಪ್ರಾಂಪ್ಟ್ ನಲ್ಲಿ, | + | | '''Enter''' ಅನ್ನು ಒತ್ತಿ. ಮುಂದಿನ ಪ್ರಾಂಪ್ಟ್ ನಲ್ಲಿ, ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ. |
|- | |- | ||
| 08:24 | | 08:24 | ||
− | | '''open square bracket eleven | + | | '''open square bracket eleven semicolon thirteen close square bracket''' |
|- | |- | ||
| 08:31 | | 08:31 | ||
Line 287: | Line 286: | ||
|- | |- | ||
| 08:33 | | 08:33 | ||
− | | '''initial value vector''' | + | | '''initial value vector''' ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಕೊಡಲು, ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ. |
|- | |- | ||
| 08:38 | | 08:38 | ||
− | |'''open square bracket one semicolon one close square bracket''' | + | |'''open square bracket one semicolon one close square bracket''' |
|- | |- | ||
| 08:43 | | 08:43 | ||
Line 296: | Line 295: | ||
|- | |- | ||
| 08:45 | | 08:45 | ||
− | |ನಂತರ ನಾವು ''' maximum number of iterations''' ಅನ್ನು 25 ಎಂದು | + | |ನಂತರ, ನಾವು ''' maximum number of iterations''' ಅನ್ನು 25 ಎಂದು ಕೊಡುತ್ತೇವೆ. |
|- | |- | ||
| 08:50 | | 08:50 | ||
Line 302: | Line 301: | ||
|- | |- | ||
| 08:52 | | 08:52 | ||
− | | | + | | '''tolerance level''' ಅನ್ನು zero point zero zero zero zero one ಎಂದು ಕೊಡೋಣ. |
|- | |- | ||
| 08:58 | | 08:58 | ||
Line 308: | Line 307: | ||
|- | |- | ||
| 09:01 | | 09:01 | ||
− | | | + | |ಕೊನೆಯದಾಗಿ, ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡಲು, ನಾವು ಹೀಗೆ ಟೈಪ್ ಮಾಡುತ್ತೇವೆ. |
|- | |- | ||
| 09:04 | | 09:04 | ||
− | |'''G a u s s S e i d e l open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis''' | + | |'''G a u s s S e i d e l open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis''' |
|- | |- | ||
| 09:24 | | 09:24 | ||
Line 317: | Line 316: | ||
|- | |- | ||
| 09:26 | | 09:26 | ||
− | | '''x one''' ಮತ್ತು '''x two''' ಗಳ | + | | '''x one''' ಮತ್ತು '''x two''' ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ತೋರಿಸಲಾಗಿದೆ. |
|- | |- | ||
| 09:30 | | 09:30 | ||
− | |ಇದೇ | + | | ಇದೇ ಸಮಸ್ಯೆಯನ್ನು ಸಾಲ್ವ್ ಮಾಡಲು, ಇಲ್ಲಿ ಬೇಕಾಗುವ ಇಟರೇಷನ್ ಗಳ ಸಂಖ್ಯೆಯು, ಜಕೋಬಿ ವಿಧಾನದಲ್ಲಿ ಇರುವುದಕ್ಕಿಂತ ಕಡಿಮೆ ಆಗಿದೆ. |
|- | |- | ||
| 09:37 | | 09:37 | ||
− | | | + | | ಜಕೋಬಿ ಮತ್ತು ಗಾಸ್ ಸೈಡಲ್ ವಿಧಾನಗಳನ್ನು ಬಳಸಿ ಈ ಸಮಸ್ಯೆಯನ್ನು ನೀವು ಸ್ವತಃ ಸಾಲ್ವ್ ಮಾಡಿ. |
|- | |- | ||
| 09:43 | | 09:43 | ||
Line 329: | Line 328: | ||
|- | |- | ||
| 09:47 | | 09:47 | ||
− | | ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಸಿಸ್ಟಮ್ | + | | ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಸಿಸ್ಟಮ್ ಅನ್ನು ಸಾಲ್ವ್ ಮಾಡಲು, ಸೈಲ್ಯಾಬ್ ಕೋಡ್ ಅನ್ನು ಬರೆಯುವುದು ಮತ್ತು |
|- | |- | ||
| 09:52 | | 09:52 | ||
− | | ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಸಿಸ್ಟಮ್ | + | | ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಸಿಸ್ಟಮ್ ನಲ್ಲಿ, ವೇರಿಯೇಬಲ್ ಗಳ ವ್ಯಾಲ್ಯುವನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಇವುಗಳನ್ನು ಕಲಿತಿದ್ದೇವೆ. |
|- | |- | ||
|09:58 | |09:58 |
Latest revision as of 08:48, 6 February 2018
Time | Narration |
00:01 | ಸೈಲ್ಯಾಬ್ ನಲ್ಲಿ, Solving System of Linear Equations using Iterative Methods ಎಂಬ ಈ ಟ್ಯುಟೋರಿಯಲ್ ಗೆ ನಿಮಗೆ ಸ್ವಾಗತ. |
00:10 | ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ ನೀವು, |
00:14 | ‘ಇಟರೇಟಿವ್ ಮೆಥಡ್’ ಗಳನ್ನು ಬಳಸಿ, ‘ಲೀನಿಯರ್ ಇಕ್ವೇಶನ್’ ಗಳ ಸಿಸ್ಟಮ್ ನ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಹಾಗೂ |
00:18 | ಇದಕ್ಕಾಗಿ ಸೈಲ್ಯಾಬ್ ಕೋಡ್ ಅನ್ನು ಬರೆಯುವುದನ್ನು ಕಲಿಯುವಿರಿ. |
00:22 | ಈ ಟ್ಯುಟೋರಿಯಲ್ ಅನ್ನು ರೆಕಾರ್ಡ್ ಮಾಡಲು ನಾನು, |
00:25 | Ubuntu 12.04 ಆಪರೇಟಿಂಗ್ ಸಿಸ್ಟಮ್ ಅನ್ನು |
00:28 | Scilab 5.3.3 ಆವೃತ್ತಿಯೊಂದಿಗೆ ಬಳಸುತ್ತಿದ್ದೇನೆ. |
00:33 | ಈ ಟ್ಯುಟೋರಿಯಲ್ ಅನ್ನು ಅಭ್ಯಾಸ ಮಾಡುವ ಮೊದಲು, ನೀವು ಸೈಲ್ಯಾಬ್ ನ ಬಗ್ಗೆ ಮತ್ತು |
00:38 | ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳನ್ನು ಸಾಲ್ವ್ ಮಾಡುವುದರ ಬಗ್ಗೆ ಸ್ವಲ್ಪ ಮಟ್ಟಿಗೆ ತಿಳಿದಿರುವುದು ಅವಶ್ಯಕ. |
00:42 | ಸೈಲ್ಯಾಬ್ ಗೆ ಸಂಬಂಧಿಸಿದ ಟ್ಯುಟೋರಿಯಲ್ ಗಳಿಗಾಗಿ, ದಯವಿಟ್ಟು Spoken Tutorial ವೆಬ್ಸೈಟ್ ಅನ್ನು ನೋಡಿ. |
00:50 | 'ಜಕೋಬಿ ಮೆಥಡ್', ನಾವು ಕಲಿಯುವ ಮೊದಲನೆಯ ಇಟರೇಟಿವ್ ಮೆಥಡ್ ಆಗಿದೆ. |
00:56 | ಇಲ್ಲಿ, n ಇಕ್ವೇಷನ್ ಗಳು (ಸಮೀಕರಣ) ಮತ್ತು n ವೇರಿಯೇಬಲ್ ಗಳನ್ನು ಹೊಂದಿರುವ ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಒಂದು ಸಿಸ್ಟಮ್ ಅನ್ನು ಕೊಟ್ಟಿದೆ. |
01:02 | ನಾವು ಇಕ್ವೇಷನ್ ಗಳನ್ನು ಹೀಗೆ ಬರೆಯುತ್ತೇವೆ- x of i, k plus one, is equal to, b i, minus, summation of a i j, x j k, from j equal to one to n, divided by a i i where i is from one to n. |
01:24 | ನಾವು ಪ್ರತಿಯೊಂದು x of i ನ ವ್ಯಾಲ್ಯುವನ್ನು ಊಹಿಸುತ್ತೇವೆ. |
01:27 | ನಂತರ ಹಿಂದಿನ ಹಂತದಲ್ಲಿ ದೊರೆತ ಇಕ್ವೇಷನ್ ಗಳಲ್ಲಿ ಈ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಹಾಕುತ್ತೇವೆ. |
01:34 | ಉತ್ತರದ ಹತ್ತಿರ ಹತ್ತಿರ ಬರುವವರೆಗೂ, ಈ ಆವರ್ತನವನ್ನು ನಾವು ಮುಂದುವರಿಸುತ್ತೇವೆ. |
01:39 | ನಾವು ಜಕೋಬಿ ವಿಧಾನವನ್ನು ಬಳಸಿ, ಈ ಉದಾಹರಣೆಯನ್ನು ಸಾಲ್ವ್ ಮಾಡೋಣ. |
01:44 | ಜಕೋಬಿ ವಿಧಾನದ ಕೋಡ್ ಅನ್ನು ನೋಡೋಣ. |
01:48 | ಸೈಲ್ಯಾಬ್ ಕನ್ಸೋಲ್ ನಲ್ಲಿ ಪ್ರದರ್ಶಿಸಬೇಕಾದ ಉತ್ತರದ ಫಾರ್ಮ್ಯಾಟ್ ಅನ್ನು ಸೂಚಿಸಲು, ನಾವು format ಮೆಥಡ್ ಅನ್ನು ಬಳಸುತ್ತೇವೆ. |
01:56 | ಇಲ್ಲಿ e, ಉತ್ತರವು ’scientific notation’ ನಲ್ಲಿ (ಸೈಂಟಿಫಿಕ್ ನೊಟೇಶನ್) ಇರಬೇಕೆಂದು ಸೂಚಿಸುತ್ತದೆ. |
02:01 | ಮತ್ತು, ಸಂಖ್ಯೆ ಇಪ್ಪತ್ತು (20), ಪ್ರದರ್ಶಿಸಬೇಕಾದ ಅಂಕಿಗಳನ್ನು ಸೂಚಿಸುತ್ತದೆ. |
02:06 | ನಂತರ ನಾವು input ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸಿ, |
02:10 | 'ಕೊಇಫಿಶಿಯೆಂಟ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್' (coefficient matrix). |
02:12 | 'ರೈಟ್-ಹ್ಯಾಂಡ್-ಸೈಡ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
02:14 | 'ಇನಿಶಿಯಲ್ ವ್ಯಾಲ್ಯೂಸ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
02:17 | 'ಇಟರೇಷನ್ ಗಳ ಗರಿಷ್ಠ ಸಂಖ್ಯೆ' ಮತ್ತು |
02:19 | ' ಕನ್ವರ್ಜೆನ್ಸ್ ಟಾಲರೆನ್ಸ್' - ಇವುಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಪಡೆಯುವೆವು. |
02:22 | ನಂತರ ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ A, ‘ಸ್ಕ್ವೇರ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್’ ಆಗಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸಲು, size ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸುತ್ತೇವೆ. |
02:29 | ಅದು ಹಾಗೆ ಆಗಿರದಿದ್ದರೆ, ಎರರ್ ಅನ್ನು ಡಿಸ್ಪ್ಲೇ ಮಾಡಲು, ನಾವು error ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸುತ್ತೇವೆ. |
02:34 | ನಂತರ ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ A, 'ಡಯಾಗೊನಲಿ ಡಾಮಿನೆಂಟ್(diagonally dominant)' ಆಗಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. |
02:40 | ಮೊದಲನೆಯ ಆರ್ಧವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ ನ ಪ್ರತಿಯೊಂದು ‘ರೋ’ ದ ಮೊತ್ತವನ್ನು ಕಂಡುಹಿಡಿಯುತ್ತದೆ. |
02:45 | ನಂತರ ಅದು, ‘ಡಯಾಗೊನಲ್ ಎಲಿಮೆಂಟ್’ ನ ಎರಡರಷ್ಟು, ಆ ‘ರೋ’ದ ಎಲಿಮೆಂಟ್ ಗಳ ಮೊತ್ತಕ್ಕಿಂತ ಹೆಚ್ಚು ಇದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತದೆ. |
02:54 | ಇಲ್ಲವಾದಲ್ಲಿ, error ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸಿ, ಎರರ್ ಅನ್ನು ಡಿಸ್ಲ್ಪೇ ಮಾಡಲಾಗುತ್ತದೆ. |
03:01 | ನಂತರ ನಾವು, A, b, x zero, maximum iteration ಮತ್ತು |
03:07 | tolerance level ಎಂಬ ‘ಇನ್ಪುಟ್ ಆರ್ಗ್ಯುಮೆಂಟ್’ ಗಳೊಂದಿಗೆ |
03:09 | Jacobi Iteration( ಜಕೋಬಿ ಇಟರೇಶನ್) ಎಂಬ ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ. |
03:14 | ಇಲ್ಲಿ, x zero, initial values matrix (ಇನಿಶಿಯಲ್ ವ್ಯಾಲ್ಯುಸ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ) ಆಗಿದೆ. |
03:19 | ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ A ಮತ್ತು initial values ಮ್ಯಾಟ್ರಿಕ್ಸ್ ನ ಸೈಜ್ ಪರಸ್ಪರ ಹೊಂದಿಕೆ ಆಗುತ್ತದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. |
03:28 | x k p one ಗಾಗಿ ವ್ಯಾಲ್ಯುವನ್ನು ಕಂಡುಹಿಡಿಯುತ್ತೇವೆ. ನಂತರ, relative error, tolerance level ಗಿಂತ ಕಡಿಮೆ ಇದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. |
03:38 | ಅದು tolerance level ಗಿಂತ ಕಡಿಮೆ ಇದ್ದರೆ, ನಾವು ಇಟರೇಷನ್ ಅನ್ನು break ಮಾಡುತ್ತೇವೆ ಮತ್ತು ಉತ್ತರವನ್ನು ರಿಟರ್ನ್ ಮಾಡುತ್ತೇವೆ. |
03:45 | ಕೊನೆಯದಾಗಿ, ಫಂಕ್ಷನ್ ಅನ್ನು end ಮಾಡುತ್ತೇವೆ. |
03:48 | ಈಗ ಫಂಕ್ಷನ್ ಅನ್ನು ಸೇವ್ ಮಾಡಿ, ಎಕ್ಸಿಕ್ಯೂಟ್ ಮಾಡೋಣ. |
03:51 | 'ಸೈಲ್ಯಾಬ್ ಕನ್ಸೋಲ್' ಗೆ ಹಿಂದಿರುಗಿ. |
03:54 | ಪ್ರತಿಯೊಂದು ಪ್ರಾಂಪ್ಟ್ ನಲ್ಲಿ ನಾವು ವ್ಯಾಲ್ಯೂಗಳನ್ನು ನಮೂದಿಸೋಣ. |
03:57 | coefficient matrix A ಅನ್ನು ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ: open square bracket two space one semi colon five space seven close square bracket . |
04:08 | Enter ಅನ್ನು ಒತ್ತಿ. |
04:10 | ನಂತರ ಹೀಗೆ ಟೈಪ್ ಮಾಡುತ್ತೇವೆ: open square bracket eleven semicolon thirteen close square bracket |
04:17 | Enter ಅನ್ನು ಒತ್ತಿ. |
04:20 | initial values matrix ಅನ್ನು ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ: open square bracket one semicolon one close square bracket |
04:28 | Enter ಅನ್ನು ಒತ್ತಿ. |
04:30 | maximum number of iterations- ಇದು 25 ಆಗಿರಲಿ. |
04:34 | Enter ಅನ್ನು ಒತ್ತಿ. |
04:36 | convergence tolerance level: ಇದು zero point zero zero zero zero one ಆಗಿರಲಿ. |
04:44 | Enter ಅನ್ನು ಒತ್ತಿ. |
04:46 | ನಾವು ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ, ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡುತ್ತೇವೆ: |
04:48 | Jacobi Iteration open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis |
05:04 | Enter ಅನ್ನು ಒತ್ತಿ. |
05:06 | 'ಕನ್ಸೋಲ್ ' ನಲ್ಲಿ, x one ಮತ್ತು x two ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ತೋರಿಸಲಾಗಿದೆ. |
05:11 | ಇಟರೇಷನ್ ಗಳ ಸಂಖ್ಯೆಯನ್ನು ಕೂಡ ತೋರಿಸಲಾಗಿದೆ. |
05:14 | ಈಗ ನಾವು 'ಗಾಸ್ ಸೈಡಲ್ (Gauss Seidel)' ವಿಧಾನವನ್ನು ಕಲಿಯೋಣ. |
05:19 | ಇಲ್ಲಿ, ‘n’ ಇಕ್ವೇಷನ್ ಗಳು ಮತ್ತು ‘n’ ವೇರಿಯೇಬಲ್ ಗಳನ್ನು ಹೊಂದಿರುವ ಒಂದು ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಸಿಸ್ಟಮ್ ಅನ್ನು ಕೊಡಲಾಗಿದೆ. |
05:26 | ಪ್ರತಿಯೊಂದು ವೇರಿಯೇಬಲ್ ಗಾಗಿ, ನಾವು ಈ ಇಕ್ವೇಷನ್ ಗಳನ್ನು ಪುನಃ ಹೀಗೆ ಬರೆಯುತ್ತೇವೆ. |
05:29 | ಉಳಿದ ವೇರಿಯೇಬಲ್ ಗಳು ಮತ್ತು ಅವುಗಳ ಕೋಇಫಿಶಿಯೆಂಟ್ ಗಳನ್ನು, ಅದಕ್ಕೆ ಸಂಬಂಧಿತ ‘ರೈಟ್ ಹ್ಯಾಂಡ್ ಸೈಡ್ ಎಲಿಮೆಂಟ್’ನಿಂದ ಕಳೆಯುತ್ತೇವೆ (ಮೈನಸ್). |
05:37 | ನಂತರ ಇದನ್ನು, ಆ ವೇರಿಯೇಬಲ್ ನ ಕೋಇಫಿಶಿಯೆಂಟ್ ಆಗಿರುವ a i i ನಿಂದ ಭಾಗಿಸುತ್ತೇವೆ. |
05:45 | ಕೊಟ್ಟಿರುವ ಪ್ರತಿಯೊಂದು ಇಕ್ವೇಷನ್ ಗೂ ಇದನ್ನೇ ಮಾಡಲಾಗುತ್ತದೆ. |
05:49 | ‘ಜಕೋಬಿ ಮೆಥಡ್’ ನಲ್ಲಿ, x of i k plus one ನ ಕಂಪ್ಯುಟೇಷನ್ ಗಾಗಿ, x of i k plus one ದ ಹೊರತಾಗಿ, x of i k ದ ಎಲ್ಲಾ ಎಲಿಮೆಂಟ್ ಗಳನ್ನೂ ಬಳಸಲಾಗುತ್ತದೆ. |
06:03 | 'ಗಾಸ್ ಸೈಡಲ್ ಮೆಥಡ್’ ನಲ್ಲಿ, ನಾವು x of i k ದ ವ್ಯಾಲ್ಯುದ ಬದಲಾಗಿ x of i k plus one ದ ವ್ಯಾಲ್ಯುವನ್ನು ಬರೆಯುತ್ತೇವೆ. |
06:12 | ' ಗಾಸ್ ಸೈಡಲ್ ಮೆಥಡ್' ಅನ್ನು ಬಳಸಿ, ನಾವು ಈ ಉದಾಹರಣೆಯನ್ನು ಸಾಲ್ವ್ ಮಾಡೋಣ. |
06:17 | ಇದಕ್ಕಾಗಿ 'ಗಾಸ್ ಸೈಡಲ್ ಮೆಥಡ್' ನ ಕೋಡ್ ಅನ್ನು ನೋಡೋಣ. |
06:21 | ಇಲ್ಲಿ ಮೊದಲನೆಯ ಸಾಲು, format ಮೆಥಡ್ ಅನ್ನು ಬಳಸಿ, ಸೈಲ್ಯಾಬ್ ಕನ್ಸೋಲ್ ನಲ್ಲಿ ತೋರಿಸಲಾಗುವ ಉತ್ತರದ ಫಾರ್ಮ್ಯಾಟ್ ಅನ್ನು ಸೂಚಿಸುತ್ತದೆ. |
06:29 | ನಂತರ ನಾವು input ಫಂಕ್ಷನ್ ಅನ್ನು: |
06:32 | 'ಕೋಇಫಿಶಿಯೆಂಟ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
06:34 | 'ರೈಟ್ ಹ್ಯಾಂಡ್ ಸೈಡ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
06:36 | ' ಇನಿಷಿಯಲ್ ವ್ಯಾಲ್ಯುಸ್ ಆಫ್ ವೇರಿಯೇಬಲ್ಸ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್', |
06:38 | ಇಟರೇಷನ್ ಗಳ ಗರಿಷ್ಠ ಸಂಖ್ಯೆ ಮತ್ತು |
06:40 | ' ಟಾಲರೆನ್ಸ್ ಲೆವೆಲ್' ಇವುಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಪಡೆಯಲು ಬಳಸುತ್ತೇವೆ. |
06:43 | ನಂತರ ನಾವು, Gauss Seidel ಎಂಬ ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ. ಇದು, A comma b comma x zero comma max iterations and tolerance level ಎಂಬ ‘ಇನ್ಪುಟ್ ಆರ್ಗ್ಯುಮೆಂಟ್’ ಗಳನ್ನು ಮತ್ತು solution ಎಂಬ ಔಟ್ಪುಟ್ ಆರ್ಗ್ಯುಮೆಂಟ್ ಅನ್ನು ಹೊಂದಿದೆ. |
06:58 | ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ A, ‘ಸ್ಕ್ವೇರ್ ಮ್ಯಾಟ್ರಿಕ್ಸ್’ ಆಗಿದೆಯೇ ಮತ್ತು ‘ಇನಿಶಿಯಲ್ ವೆಕ್ಟರ್’ ಮತ್ತು ಮ್ಯಾಟ್ರಿಕ್ಸ್ A ಗಳು ಹೊಂದಿಕೆ ಆಗುತ್ತವೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. ಇದಕ್ಕಾಗಿ size ಮತ್ತು length ಫಂಕ್ಷನ್ ಗಳನ್ನು ಬಳಸುತ್ತೇವೆ. |
07:10 | ನಂತರ ನಾವು ಇಟರೇಷನ್ ಗಳನ್ನು ಪ್ರಾರಂಭಿಸುತ್ತೇವೆ. |
07:13 | initial values vector x zero, x k ಗೆ ಸಮವಾಗಿದೆ ಎನ್ನುತ್ತೇವೆ. |
07:19 | x k ದ ಸೈಜ್ ಅನ್ನು ಹೊಂದಿರುವ ಒಂದು matrix of zeros ಅನ್ನು ಕ್ರಿಯೇಟ್ ಮಾಡಿ, ಅದನ್ನು x k p one ಎನ್ನುತ್ತೇವೆ. |
07:28 | ಪ್ರತಿಯೊಂದು ಇಕ್ವೇಷನ್ ನ ವೇರಿಯೇಬಲ್ ನ ವ್ಯಾಲ್ಯುವನ್ನು ಪಡೆಯಲು, ನಾವು x k p one ಅನ್ನು ಬಳಸಿ, ಆ ಇಕ್ವೇಷನ್ ಅನ್ನು ಸಾಲ್ವ್ ಮಾಡುತ್ತೇವೆ. |
07:38 | ಪ್ರತಿಯೊಂದು ಇಟರೇಷನ್ ನಲ್ಲಿ, x k p one ನ ವ್ಯಾಲ್ಯು, ಅಪ್ಡೇಟ್ ಆಗುತ್ತದೆ (ನವೀಕರಿಸಲಾಗುತ್ತದೆ). |
07:44 | ಅಲ್ಲದೇ, relative error, ನಿಗದಿಪಡಿಸಲಾದ tolerance level ಗಿಂತ ಕಡಿಮೆ ಆಗಿದೆಯೇ ಎಂದು ನಾವು ಪರೀಕ್ಷಿಸುತ್ತೇವೆ. |
07:50 | ಅದು ಕಡಿಮೆ ಆಗಿದ್ದಲ್ಲಿ, ನಾವು ಇಟರೇಷನ್ ಅನ್ನು break ಮಾಡುವೆವು. |
07:54 | ನಂತರ, x k p one ಅನ್ನು solution ಎಂಬ ವೇರಿಯೇಬಲ್ ಗೆ ಸಮನಾಗಿಸುತ್ತೇವೆ. |
07:59 | ಕೊನೆಯದಾಗಿ, ನಾವು ಫಂಕ್ಷನ್ ಅನ್ನು end ಮಾಡುತ್ತೇವೆ. |
08:02 | ನಾವು ಫಂಕ್ಷನ್ ಅನ್ನು ಸೇವ್ ಮಾಡಿ, ಎಕ್ಸಿಕ್ಯೂಟ್ ಮಾಡೋಣ. |
08:06 | 'ಸೈಲ್ಯಾಬ್ ಕನ್ಸೋಲ್' ಗೆ ಹಿಂದಿರುಗಿ. |
08:09 | ಮೊದಲನೆಯ ಪ್ರಾಂಪ್ಟ್ ನಲ್ಲಿ ನಾವು, ಮ್ಯಾಟ್ರಿಕ್ಸ್ A ಯನ್ನು ಟೈಪ್ ಮಾಡುವೆವು. |
08:12 | ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ: open square bracket two space one semicolon five space seven close square bracket. |
08:21 | Enter ಅನ್ನು ಒತ್ತಿ. ಮುಂದಿನ ಪ್ರಾಂಪ್ಟ್ ನಲ್ಲಿ, ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ. |
08:24 | open square bracket eleven semicolon thirteen close square bracket |
08:31 | Enter ಅನ್ನು ಒತ್ತಿ. |
08:33 | initial value vector ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಕೊಡಲು, ಹೀಗೆ ಟೈಪ್ ಮಾಡಿ. |
08:38 | open square bracket one semicolon one close square bracket |
08:43 | Enter ಅನ್ನು ಒತ್ತಿ. |
08:45 | ನಂತರ, ನಾವು maximum number of iterations ಅನ್ನು 25 ಎಂದು ಕೊಡುತ್ತೇವೆ. |
08:50 | Enter ಅನ್ನು ಒತ್ತಿ. |
08:52 | tolerance level ಅನ್ನು zero point zero zero zero zero one ಎಂದು ಕೊಡೋಣ. |
08:58 | Enter ಅನ್ನು ಒತ್ತಿ. |
09:01 | ಕೊನೆಯದಾಗಿ, ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡಲು, ನಾವು ಹೀಗೆ ಟೈಪ್ ಮಾಡುತ್ತೇವೆ. |
09:04 | G a u s s S e i d e l open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis |
09:24 | Enter ಅನ್ನು ಒತ್ತಿ. |
09:26 | x one ಮತ್ತು x two ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ತೋರಿಸಲಾಗಿದೆ. |
09:30 | ಇದೇ ಸಮಸ್ಯೆಯನ್ನು ಸಾಲ್ವ್ ಮಾಡಲು, ಇಲ್ಲಿ ಬೇಕಾಗುವ ಇಟರೇಷನ್ ಗಳ ಸಂಖ್ಯೆಯು, ಜಕೋಬಿ ವಿಧಾನದಲ್ಲಿ ಇರುವುದಕ್ಕಿಂತ ಕಡಿಮೆ ಆಗಿದೆ. |
09:37 | ಜಕೋಬಿ ಮತ್ತು ಗಾಸ್ ಸೈಡಲ್ ವಿಧಾನಗಳನ್ನು ಬಳಸಿ ಈ ಸಮಸ್ಯೆಯನ್ನು ನೀವು ಸ್ವತಃ ಸಾಲ್ವ್ ಮಾಡಿ. |
09:43 | ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ ನಾವು, |
09:47 | ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಸಿಸ್ಟಮ್ ಅನ್ನು ಸಾಲ್ವ್ ಮಾಡಲು, ಸೈಲ್ಯಾಬ್ ಕೋಡ್ ಅನ್ನು ಬರೆಯುವುದು ಮತ್ತು |
09:52 | ಲೀನಿಯರ್ ಇಕ್ವೇಷನ್ ಗಳ ಸಿಸ್ಟಮ್ ನಲ್ಲಿ, ವೇರಿಯೇಬಲ್ ಗಳ ವ್ಯಾಲ್ಯುವನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಇವುಗಳನ್ನು ಕಲಿತಿದ್ದೇವೆ. |
09:58 | ಈ ಕೆಳಗಿನ ಲಿಂಕ್ ನಲ್ಲಿ ಲಭ್ಯವಿರುವ ವಿಡಿಯೋ ಅನ್ನು ವೀಕ್ಷಿಸಿ. |
10:01 | ಇದು ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ಪ್ರಕಲ್ಪದ ಸಾರಾಂಶವಾಗಿದೆ. |
10:04 | ನಿಮಗೆ ಒಳ್ಳೆಯ ಬ್ಯಾಂಡ್ವಿಡ್ತ್ ಸಿಗದಿದ್ದರೆ, ಇದನ್ನು ಡೌನ್ಲೋಡ್ ಮಾಡಿ ನೋಡಬಹುದು. |
10:09 | ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ತಂಡವು: |
10:11 | ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ಗಳನ್ನು ಬಳಸಿ ಕಾರ್ಯಾಶಾಲೆಗಳನ್ನು ಏರ್ಪಡಿಸುತ್ತದೆ. |
10:15 | ಪರೀಕ್ಷೆಯಲ್ಲಿ ಉತ್ತೀರ್ಣರಾದವರಿಗೆ ಪ್ರಮಾಣಪತ್ರವನ್ನು ಕೊಡುತ್ತದೆ. |
10:18 | ಹೆಚ್ಚಿನ ವಿವರಗಳಿಗಾಗಿ, ದಯವಿಟ್ಟು ಈ ಲಿಂಕ್ ಗೆ ಬರೆಯಿರಿ:
conatct@spoken-tutorial.org. |
10:25 | 'ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ಸ್' ಪ್ರೊಜೆಕ್ಟ್, 'ಟಾಕ್ ಟು ಎ ಟೀಚರ್' ಪ್ರೊಜೆಕ್ಟ್ ನ ಒಂದು ಭಾಗವಾಗಿದೆ. |
10:30 | ಇದು ನ್ಯಾಷನಲ್ ಮಿಶನ್ ಆನ್ ಎಜುಕೇಶನ್, ICT, MHRD, ಭಾರತ ಸರ್ಕಾರದ ಆಧಾರವನ್ನು ಪಡೆದಿದೆ. |
10:37 | ಈ ಮಿಶನ್ ನ ಕುರಿತು ಹೆಚ್ಚಿನ ಮಾಹಿತಿಯು ಈ ಕೆಳಗಿನ ಲಿಂಕ್ ನಲ್ಲಿ ಲಭ್ಯವಿದೆ. |
10:49 | ಈ ಸ್ಕ್ರಿಪ್ಟ್ ನ ಅನುವಾದಕಿ ಮೈಸೂರಿನಿಂದ ಅಂಜನಾ ಅನಂತನಾಗ್ ಮತ್ತು ಧ್ವನಿ ನವೀನ್ ಭಟ್ಟ, ಉಪ್ಪಿನ ಪಟ್ಟಣ. |
10:51 | ಧನ್ಯವಾದಗಳು. |