Scilab/C4/ODE-Euler-methods/Khasi
From Script | Spoken-Tutorial
Time | Narration |
00:01 | Paralok, ngi pdiangsngewbha ia phi sha ka Spoken Tutorial halor ka Solving ODEs using Euler Methods. |
00:09 | Ha kaba kut jong kane ka jinghikai, phin sa nang kumno ban: |
00:12 | Solve ia ki ODEs da kaba pyndonkam Euler bad Modified Euler methods ha ka Scilab |
00:18 | Develop ia ka Scilab code ban solve ia ki ODEs. |
00:22 | Ban record ia kane ka jinghikai , nga pyndonkam da ka |
00:25 | Ubuntu 12.04 kum ka operating system |
00:28 | Bad ka Scilab 5.3.3 version. |
00:32 | Ban pyrshang ia kane ka jinghikai, u ne ka nongpule |
00:34 | Kidei ban don ia ki jingtip ba donkam shaphang ka Scilab |
00:37 | Bad dei ban tip kumno ban solve ia ki ODEs. |
00:40 | Ban pule ia ka Scilab, sngewbha leit sha ki jinghikai ba iadei ba don ha ka Spoken Tutorial website. |
00:48 | Ha ka Euler method, ngi ioh ia ka solution ba iajan kaba biang jong ka ODE. |
00:55 | La pyndonkam ia ka ban solve ia ki initial value problems ha kaba ki initial values jong ka differential equation la ai. |
01:03 | Lah ban pyndonkam ban solve ia ki continuous functions. |
01:08 | To ngin solve ia ka nuksa da kaba pyndonkam ia ka Euler method. |
01:12 | La ai ia ngi ia ka initial value problem - |
01:15 | y dash is equal to minus two t minus y. |
01:20 | Ka initial value jong u y la ai kum minus one(-1) |
01:25 | Bad ka step length la ai kum zero point one(0.1). |
01:29 | Ngi hap ban wad ia ka value jong u y ha kapor t equal to zero point five. |
01:36 | To ngin peit ia u code na ka bynta ka Euler method. |
01:39 | Plie ia ka Euler underscore o d e dot sci ha ka Scilab editor. |
01:47 | Ngi define ia ka function Euler underscore o d e ryngkat bad ki arguments f, t init, y init, h bad N |
01:58 | Ha kaba f u thew ia ka function ba dei ban solve |
02:01 | t init kadei ka initial value jong ka time t, |
02:05 | y init kadei ka initial value jong y, |
02:09 | h kadei ka step length bad n kadei ka number jong ki iterations. |
02:14 | Nangta ngi initialize ia ki values jong t bad y sha ki vectors jong zeros. |
02:21 | Ngi buh ia ki initial values jong t bad y ha t of one bad y of one |
02:29 | Nangta ngi iterate na one to N ban wad ia ka value jong u y. |
02:33 | Hangne ngi pyntreikam ia ka Euler method ban wad ia ka value jong u y. |
02:39 | Khatduh eh ngi end ia ka function. |
02:42 | Save and execute ia ka file Euler underscore o d e dot sci. |
02:49 | Phai sha ka Scilab console ban solve ia ka problem ba la ai nuksa. |
02:54 | Ngi define ia ka function da kaba type |
02:56 | d e f f open parenthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to open parenthesis minus two asterisk t close parenthesis minus y close single quote close parenthesis |
03:26 | Nion Enter. |
03:28 | Nangta type: t init is equal to zero. |
03:31 | Nion Enter. |
03:33 | Type: y init is equal to minus one. |
03:38 | Nion Enter . |
03:40 | Type: step length h is equal to zero point one. |
03:44 | Nion Enter . |
03:46 | Ka step length kadei zero point one bad ngi hap ban wad ia ka value jong u y ha zero point five. |
03:53 | Te , ka number jong ki iterations kadei ban long five. |
03:59 | Ha man kawei ka iteration, , u value jong t un sa kiew da zero point one. |
04:05 | Te type capital N is equal to five (N=5) |
04:09 | Bad nion Enter. |
04:11 | Ban call ia ka function, type: |
04:14 | open square bracket t comma y close square bracket equal to Euler underscore o d e open parenthesis f comma t init comma y init comma h comma capital N close parenthesis |
04:33 | Nion Enter. |
04:35 | U value jong u y at t equal to zero point five la pyni. |
04:41 | Mynta to ngin peit ia ka Modified Euler method. |
04:45 | Kadei ka second order method bad kadei ka stable two step method. |
04:51 | Ngi wad ia ka average jong ka function ha kaba sdang bad bakut jong ka time step. |
04:56 | To ngin solve ia kane ka nuksa da kaba pyndonkam ia ka Modified Euler method. |
05:02 | Ngi ai ia ka function y dash is equal to t plus y plus t y. |
05:08 | Ka initial value jong u y kadeione |
05:12 | Bad ka step length kadei zero point zero one. |
05:16 | Ngi hap ban wad ia ka value jong u y ha time t equal to zero point one da kaba pyndonkam ia ka Modified Euler's method. |
05:25 | To ngin peit ia u code na ka bynta ka Modified Euler method ha ka Scilab Editor. |
05:31 | Ngi define ia ka function ryngkat ki arguments f, t init, y init, h bad n |
05:39 | Ha kaba f kadei ka function ba dei ban solve, |
05:42 | t init kadei ka intial time value, |
05:45 | y init kadei ka inital value jong u y, |
05:49 | h kadei ka step length bad |
05:51 | N kadei ka number jong ki iterations. |
05:54 | Nangta ngi initialize ia ki arrays na ka bynta y bad t. |
05:58 | Ngi buh ia ki initial values jong t bad y hat of one bad y of one |
06:07 | Ngi pyntreikam ia ka Modified Euler Method hangne. |
06:11 | Hangne, ngi wad ia ka average value jong u y ha kaba sdang bad bakut jong ka time step. |
06:17 | Save and execute ia ka fileModi Euler underscore o d e dot sci. |
06:23 | Phai sha ka Scilab console. |
06:26 | Clear ia ka screen da kaba type c l c. |
06:30 | Nion Enter. |
06:32 | Define ia ka function da kaba type d e f f open parenthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to t plus y plus t asterisk y close single quote close parenthesis |
07:01 | Nion Enter. |
07:03 | Nangta type: t init equal to zero, nion Enter. |
07:08 | Type: y init equal to one bad nion Enter. |
07:12 | Nangta type: h equal to zero point zero one nion Enter. |
07:19 | Type: capital N equal to ten |
07:22 | Namar ba ka number jong ki iterationskadei ban dei ten sha time t equal to zero point one ryngkat ka step length jong zero point zero one. |
07:34 | Nion Enter. |
07:36 | Nangta call ia ka function Modi Euler underscore o d e da kaba type: |
07:41 | open square bracket t comma y close square bracket equal to Modi Euler underscore o d e open parenthesis f comma t init comma y init comma h comma capital N close parenthesis |
08:03 | Nion Enter. |
08:05 | Ka value jong u y at t equal to zero point one la pyni. |
08:10 | To ngin batai kyllum ia kane ka jinghikai. |
08:14 | Ha kane ka jinghikai, ngi la pule shaphang ban develop ia ka Scilab code na ka bynta ka Euler badmodified Euler methods. |
08:21 | Ngi la dep pule ruh kumno ban solve ia ki ODEs da kaba pyndonkam ia kine ki rukom ha ka Scilab. |
08:28 | Peit ia ka video ba don ha ka link ba la pyni harum. |
08:32 | Ka batai kyllum ia ka Spoken Tutorial project. |
08:35 | Lada phim don ia ka bandwidth kaba biang, phi lah ban shu download bad peit ia ka. |
08:40 | Ka kynhun jong ka spoken tutorial project: |
08:42 | Ka pynlong ia ki workshops da kaba pyndonkam da ki spoken tutorials. |
08:45 | Ka ai certificates sha kito kiba pass ha ka online test. |
08:49 | Na ka bynta kham bun ki jingtip ba bniah sngewbha thoh sha ka contact@spoken-tutorial.org. |
08:55 | Spoken Tutoral Project kadei shibynta jong ka Talk to a Teacher project. |
09:00 | La kyrshan ia ka da ka National Mission on Eduction lyngba ka ICT, MHRD, Sorkar India. |
09:07 | Kham bun ki jingtip halor kane ka mission kidon ha ka link ba la ai harum: |
09:13 | Nga i Meboreen na Shillong, nga pynkut ia kane. |
09:15 | Khublei shibun ia ka jingsnohktilang jong phi. |