Scilab/C2/Matrix-Operations/English-timed
From Script | Spoken-Tutorial
Time | Narration |
00:02 | Welcome to the spoken tutorial on Matrix Operations. |
00:06 | At the end of this spoken tutorial, you will be able to: |
00:10 | * Access the elements of Matrix |
00:13 | * Determine the determinant, inverse and eigen values of a matrix. |
00:18 | * Define special matrices. |
00:22 | * Perform elementary row operations. |
00:25 | * Solve the system of linear equations. |
00:28 | The prerequisites are: |
00:30 | Scilab should be installed on your system. |
00:34 | You should have listened to the Spoken Tutorial: Getting started with Scilab and Vector Operations. |
00:42 | I am using Windows 7 operating system and Scilab 5.2.2 for demonstration. |
00:50 | Start Scilab by double-clicking on the Scilab icon present on your Desktop. |
00:59 | It is suggested that the user should practice this tutorial in Scilab simultaneously while pausing the video at regular intervals of time. |
01:08 | Recall that in the Spoken Tutorial: Vector Operations, |
01:12 | matrix E was defined as E is equal to open square bracket 5 space 19 space 15 semicolon 8 space 22 space 36 close the square bracket and press Enter. |
01:37 | Let us now see how to address individual elements of a matrix, separately. |
01:42 | To access the element in the first row and second column, type E into bracket 1,2 and press enter |
01:56 | It is easy to extract an entire row or an entire column of a matrix in Scilab . |
02:03 | For example, first row of E can be obtained using the following command: E1 = E into bracket 1 comma colon and press Enter. |
02:23 | The command returns all the elements of the first row, in the order of their appearance in the row. |
02:30 | Colon, when used alone, refers to all the elements of row or column, depending upon whether it appears as a first or a second entry respectively inside the bracket. |
02:44 | Also, any subset of a matrix can be extracted using a colon (“:”). |
02:49 | For example, the set of elements starting from second to third columns of E can be obtained using the following command: |
03:00 | E2 = E of colon comma 2 colon 3 close the bracket and press Enter. |
03:18 | In the above, the second entry in the bracket, that is, "2 colon 3" makes a reference to elements from column 2 to column 3. |
03:28 | If the size of the matrix is not known, $ (dollar ) symbol can be used to extract the last row or column of that matrix. |
03:38 | For example to extract all rows of the last column of the matrix E, we will type |
03:46 | Elast col= E into brackets colon comma dollar sign close the bracket and press Enter. |
04:06 | Now, let us learn how to calculate the determinant of a square matrix using the command det. |
04:13 | Recall that in the Spoken Tutorial, Vector Operations, we had defined A as |
04:19 | A = open square bracket 1 space 2 space minus 1 semicolon -2 space - 6 space 4 semicolon -1 space -3 space 3 close the square bracket and press Enter. |
04:50 | Let us calculate the determinant of A by the command det of A and press Enter. |
05:00 | To calculate the inverse and the eigen values of a matrix, the commands inv and spec can be used respectively. |
05:09 | For example: inv of A gives the inverse of A and spec of A gives the eigen values of matrix A. |
05:29 | See help spec to see how eigen vectors can also be obtained using this command. |
05:35 | Square or cube of a square matrix A can be calculated by simply typing A square or A cube respectively. |
05:52 | A caret symbol is used to raise a matrix to power, like in ordinary arithmetic operations. In our keyboard, it is obtained by pressing shift+6. |
06:05 | Please pause the tutorial now and attempt the exercise number one given in the video. |
06:17 | Certain special matrices can also be created in Scilab. |
06:24 | For example, a matrix of zeros with 3 rows and 4 columns can be created using zeros command |
06:36 | zeros into bracket 3 comma 4 and press Enter. |
06:47 | A matrix of all ones can be created with ones command as follows: |
06:53 | ones into bracket 2 comma 4 gives a matrix of all ones. |
07:01 | It is easy to create an identity matrix using the eye command: |
07:07 | ' e y e' of 4 comma 4 gives a 4 by 4 identity matrix. |
07:16 | A user may need a matrix consisting of pseudo random numbers. It can be generated using the rand command as follows: |
07:25 | p=rand into bracket 2, 3 and press Enter |
07:39 | In linear systems, one of the important sets of operations a user carries out on matrices are the elementary row and column operations. |
07:55 | These operations involve executing row operations on a matrix to make entries below a nonzero number, zero. This can be done easily in Scilab. |
08:07 | Recall that in the Spoken Tutorial Vector Operations, we had defined the matrix P as follows. |
08:17 | P = open square bracket 1 space 2 space 3 semicolon 4 space 11 space 6 close the square bracket and press Enter. |
08:33 | Let us consider an example where the element in the second row, first column is to be transformed to zero using elementary row and column operation. |
08:44 | The operation can be executed by multiplying the first row by 4 and subtracting it from the second row as in the following command: |
08:56 | P into bracket 2 comma colon is equal to P into bracket 2 comma colon minus 4 multiplied by P into bracket 1 comma colon and press Enter. |
09:28 | The procedure can be extended to larger systems and to other forms of elementary column operations. |
09:35 | Rows and columns can be easily appended to matrices. |
09:39 | For example, to append a row containing the elements [5 5 -2] to P, the following command is used: |
09:48 | T = open square bracket P semicolon, open another square bracket write down the elements 5 5 -2 close both the square brackets and press Enter. |
10:14 | The semicolon after P states that anything after it should go to the next row. |
10:20 | This is expected in the way a matrix is defined. |
10:24 | As an exercise, please pause here and check if the brackets around the new row, in the command just executed, are really required. |
10:34 | Matrix notations are used while solving equations. |
10:40 | Let us solve the following set of linear equations: |
10:44 | x1 + 2 x2 − x3 = 1 |
10:48 | −2 x1 − 6 x2 + 4 x3 = −2 |
10:54 | and − x1 − 3 x2 + 3 x3 = 1 |
11:00 | The above set of equations can be written in Ax = b form. |
11:05 | The solution is then given as inverse of A times b. |
11:11 | Let us solve the set of equations. |
11:15 | A is defined as A = open square bracket 1 space 2 space -1 semicolon -2 space -6 space 4 semicolon -1 space -3 space 3 close the square bracket and press Enter. |
11:46 | B can be defined as b is equal to square bracket 1 semicolon -2 semicolon 1 close the square bracket and press Enter. |
12:04 | The solution, x, can be obtained by using x = inv of A multiplied by b. |
12:19 | It is worth noting that it is a small letter 'i' in the command, inv. |
12:26 | Alternatively, the same result can be achieved using a backslash operation in Scilab. |
12:33 | Let's do this in Scilab: x is equal to A backslash b and press Enter. |
12:44 | It gives the same result. Type help backslash and help inv in Scilab to know more about individual advantages and disadvantages. |
12:55 | The integrity of the solution can be verified by back substitution, that is, by calculating Ax-b: |
13:05 | A multiplied by x minus b. |
13:10 | The above exercise verifies the result achieved earlier. |
13:14 | It is possible that in some systems the above verification exercise may not yield a matrix with exact zeros as its elements due to intermediate floating point operations. |
13:27 | However, one will indeed get a very small number, typically of the order of 10 raised to -16. |
13:34 | Please pause the tutorial now and attempt exercise number two given in the video. |
13:49 | This brings us to the end of this spoken tutorial on MatrixOperation. |
13:53 | There are many other functions in Scilab which will be covered in other spoken tutorials. |
13:59 | Keep watching the Scilab links. |
14:02 | In this tutorial we have learnt: |
14:04 | * To access the element of the matrix using the colon operator. |
14:07 | * Calculate the inverse of a matrix using the inv command or by backslash. |
14:14 | * Calculate the determinant of matrix using det command. |
14:18 | * Calculate eigen values of a matrix using spec command. |
14:23 | Define a matrix having all the elements one, Null Matrix, Identity matrix and a matrix with random elements by using functions ones(), zeros(), eye(), rand() respectively. |
14:39 | Solve the system of linear equations. |
14:42 | This spoken tutorial: has been created by the Free and Open Source Software in Science and Engineering Education(FOSSEE), |
14:51 | More information on the FOSSEE project could be obtained from http://fossee.in or http://scilab.in |
14:58 | Supported by the National Mission on Eduction through ICT, MHRD, Government of India. |
15:05 | For more information, visit: http://spoken-tutorial.org/NMEICT-Intro |
15:14 | This is Anuradha Amrutkar from IIT Bombay, signing off. |
15:18 | Thank you for joining. Goodbye. |
Contributors and Content Editors
Gaurav, Jyotisolanki, PoojaMoolya, Ranjana, Sandhya.np14, Sneha