Difference between revisions of "CircuitJS/C2/Kirchhoff's-Law/English"

From Script | Spoken-Tutorial
Jump to: navigation, search
(Created page with " {| border="1" |- || '''Visual Cue''' || '''Narration''' |- || '''Slide:1''' '''Title slide''' || Welcome to the Spoken tutorial on '''Kirchhoff's Law''' using '''Circuitjs'''...")
 
Line 8: Line 8:
 
'''Title slide'''
 
'''Title slide'''
 
|| Welcome to the Spoken tutorial on '''Kirchhoff's Law''' using '''Circuitjs''' simulator.
 
|| Welcome to the Spoken tutorial on '''Kirchhoff's Law''' using '''Circuitjs''' simulator.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| '''Slide 2:'''
 
|| '''Slide 2:'''
  
 
'''Learning Objectives'''
 
'''Learning Objectives'''
 
|| In this tutorial, we will learn about,
 
|| In this tutorial, we will learn about,
* <div style="margin-left:1.27cm;margin-right:0cm;">Kirchhoff’s Voltage Law and</div>
+
* Kirchhoff’s Voltage Law and
* <div style="margin-left:1.27cm;margin-right:0cm;">Kirchhoff’s Current Law.</div>
+
* Kirchhoff’s Current Law.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| '''Slide 3:'''
 
|| '''Slide 3:'''
  
 
'''System Requirement'''
 
'''System Requirement'''
 
|| To record this tutorial, I am using:
 
|| To record this tutorial, I am using:
* <div style="margin-left:1.27cm;margin-right:0cm;">'''Ubuntu Linux '''20.04 OS</div>
+
* '''Ubuntu Linux '''20.04 OS
* <div style="margin-left:1.27cm;margin-right:0cm;">'''CircuitJS '''Application</div>
+
* '''CircuitJS '''Application
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| '''Slide 4:'''
 
|| '''Slide 4:'''
  
 
'''Prerequisite'''
 
'''Prerequisite'''
 
|| To follow this tutorial, you should have a basic knowledge of,
 
|| To follow this tutorial, you should have a basic knowledge of,
* <div style="margin-left:1.27cm;margin-right:0cm;">Electrical circuits.</div>
+
* Electrical circuits.
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| '''Slide 5:'''
 
|| '''Slide 5:'''
  
Line 42: Line 42:
  
 
Note : Voltage drops across resistors R1, R2 and R3 are calculated as I x R1, I x R2 and I x R3 respectively.
 
Note : Voltage drops across resistors R1, R2 and R3 are calculated as I x R1, I x R2 and I x R3 respectively.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| '''Slide 6:'''
 
|| '''Slide 6:'''
 
'''Kirchhoff’s Current Law'''
 
'''Kirchhoff’s Current Law'''
Line 50: Line 50:
  
 
I<sub>1</sub> and I<sub>2</sub> are entering currents at the junction and I<sub>3</sub>, I<sub>4</sub> and I<sub>5</sub> are leaving currents.
 
I<sub>1</sub> and I<sub>2</sub> are entering currents at the junction and I<sub>3</sub>, I<sub>4</sub> and I<sub>5</sub> are leaving currents.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
  
 
'''Kirchhoff’s Law.png'''
 
'''Kirchhoff’s Law.png'''
 
|| Let’s make this complex circuit with 2 DC sources to verify '''Kirchhoff's Voltage and Current Law'''s.
 
|| Let’s make this complex circuit with 2 DC sources to verify '''Kirchhoff's Voltage and Current Law'''s.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
|| <div style="color:#ff0000;"></div>
+
||  
  
 
|| For '''Kirchhoff'''’s Law circuit, we require,
 
|| For '''Kirchhoff'''’s Law circuit, we require,
* <div style="margin-left:1.27cm;margin-right:0cm;">5 resistors of 1 Kilo Ohms.</div>
+
* 5 resistors of 1 Kilo Ohms.
* <div style="margin-left:1.27cm;margin-right:0cm;">2 DC power supply of 5 Volts.</div>
+
* 2 DC power supply of 5 Volts.
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
  
Line 72: Line 72:
  
 
In the menu bar, click on '''File''' and select '''New Blank Circuit.'''
 
In the menu bar, click on '''File''' and select '''New Blank Circuit.'''
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| Click on the '''Draw''' option and select '''Add resistor.'''
 
|| Click on the '''Draw''' option and select '''Add resistor.'''
  
Line 82: Line 82:
 
By default, the value of this resistor is 1 Kilo Ohm.
 
By default, the value of this resistor is 1 Kilo Ohm.
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| Duplicate the resistor.
 
|| Duplicate the resistor.
  
Line 97: Line 97:
 
Connect and place all the resistors in the same way as shown here.
 
Connect and place all the resistors in the same way as shown here.
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| Use Add Text option for label
 
|| Use Add Text option for label
  
<div style="color:#ff0000;"></div>
+
 
 
||  
 
||  
  
Line 106: Line 106:
  
 
Give labels as R1, R2, R3, R4, and R5 respectively as shown here.
 
Give labels as R1, R2, R3, R4, and R5 respectively as shown here.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
  
Line 118: Line 118:
  
 
Drag and draw the DC power supply in the work area.
 
Drag and draw the DC power supply in the work area.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
  
Line 130: Line 130:
  
 
Arrange and place the DC power supplies in the circuit as shown here.
 
Arrange and place the DC power supplies in the circuit as shown here.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| Name the power supplies  
 
|| Name the power supplies  
 
|| Refer to the circuit diagram shown above to check the polarity of the DC power source.
 
|| Refer to the circuit diagram shown above to check the polarity of the DC power source.
Line 138: Line 138:
 
Name the power supplies as V1 and V2 as shown here.
 
Name the power supplies as V1 and V2 as shown here.
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
 
<div style="color:#ff0000;"></div>
 
 
 
|| For better understanding, we will denote a letter to each of the junctions in the circuit.
 
|| For better understanding, we will denote a letter to each of the junctions in the circuit.
  
Line 148: Line 145:
  
 
Name these junctions as A, B, C, D, F and G as shown.
 
Name these junctions as A, B, C, D, F and G as shown.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| Point to ABFG circuit
 
|| Point to ABFG circuit
 
|| The circuit ABFG, consists of resistors R1, R5, R3 and power supply V1.
 
|| The circuit ABFG, consists of resistors R1, R5, R3 and power supply V1.
  
 
The current I<sub>1</sub> flows in a clockwise direction in this circuit.
 
The current I<sub>1</sub> flows in a clockwise direction in this circuit.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| Point to CBFD circuit
 
|| Point to CBFD circuit
 
|| The circuit CBFD, consists of resistors R2, R5, R4 and power supply V2.
 
|| The circuit CBFD, consists of resistors R2, R5, R4 and power supply V2.
Line 160: Line 157:
  
 
And, the current I<sub>3</sub> flows through R5 resistor.
 
And, the current I<sub>3</sub> flows through R5 resistor.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| point the cursor on the specific resistor
 
|| point the cursor on the specific resistor
  
Line 166: Line 163:
  
 
The resistor characteristics are shown at the bottom right corner.
 
The resistor characteristics are shown at the bottom right corner.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| '''Slide 7:'''
 
|| '''Slide 7:'''
  
Line 181: Line 178:
  
 
Since current I<sub>2</sub> flows in anti-clockwise direction, we have to assign a -(minus)sign in the equation.
 
Since current I<sub>2</sub> flows in anti-clockwise direction, we have to assign a -(minus)sign in the equation.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
|| <div style="color:#000000;">Let us note down the current flowing through various resistors.</div>
+
|| Let us note down the current flowing through various resistors.
  
<div style="color:#000000;">To find the value of I<sub>1</sub>, click on the R1 or R3 resistor.</div>
+
To find the value of I<sub>1</sub>, click on the R1 or R3 resistor.
  
<div style="color:#000000;">We can see that the value of I<sub>1 </sub>is 1.25 milli-Ampere at the right bottom corner of the screen.</div>
+
We can see that the value of I<sub>1 </sub>is 1.25 milli-Ampere at the right bottom corner of the screen.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
|| <div style="color:#000000;">Likewise, click on the R2 or R4 resistors. </div>
+
|| Likewise, click on the R2 or R4 resistors.  
  
<div style="color:#000000;">The value of I<sub>2 </sub>is 1.25 milli-Ampere.</div>
+
The value of I<sub>2 </sub>is 1.25 milli-Ampere.
  
<div style="color:#000000;">Similarly, to find the value of I<sub>3</sub>, click on the R5 resistor.</div>
+
Similarly, to find the value of I<sub>3</sub>, click on the R5 resistor.
  
<div style="color:#000000;">The value of I<sub>3 </sub>is 2.5 milli-Ampere.</div>
+
The value of I<sub>3 </sub>is 2.5 milli-Ampere.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
| style="color:#000000;" | In this circuit, value of all resistors, that is, R1, R2, R3, R4, and R5 is 1 Kilo Ohm.
+
||In this circuit, value of all resistors, that is, R1, R2, R3, R4, and R5 is 1 Kilo Ohm.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
|| <div style="color:#000000;">Now let us do the calculation and find the value of V1 and V2.</div>
+
|| Now let us do the calculation and find the value of V1 and V2.
  
<div style="color:#000000;">And also check if Kirchhoff's voltage law holds true for this circuit.</div>
+
And also check if Kirchhoff's voltage law holds true for this circuit.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| '''Slide 8:'''
 
|| '''Slide 8:'''
  
Line 238: Line 235:
  
 
Hence Kirchhoff’s voltage law is verified.
 
Hence Kirchhoff’s voltage law is verified.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
|| <div style="color:#000000;">'''Slide 9:'''</div>
+
|| '''Slide 9:'''
 +
 
 +
'''Verification of Kirchhoff’s Current Law'''
 +
I<sub>1</sub> = 1.25mA
 +
I<sub>2</sub> = 1.25mA
 +
I<sub>3</sub> = 2.5mA
 +
 
 +
Image:
  
<div style="color:#000000;">'''Verification of Kirchhoff’s Current Law'''</div>
+
Kirchoffs law final slide.png
<div style="color:#000000;">I<sub>1</sub> = 1.25mA</div>
+
|| Verification of Kirchhoff’s Current Law:
<div style="color:#000000;">I<sub>2</sub> = 1.25mA</div>
+
<div style="color:#000000;">I<sub>3</sub> = 2.5mA</div>
+
<div style="color:#000000;"></div>
+
<div style="color:#000000;">Image:</div>
+
  
<div style="color:#000000;">Kirchoffs law final slide.png</div>
+
Substitute the above values in the current law equation.
|| <div style="color:#000000;">Verification of Kirchhoff’s Current Law:</div>
+
  
<div style="color:#000000;">Substitute the above values in the current law equation.</div>
+
Kirchhoff’s Current Law formula is:
  
<div style="color:#000000;">Kirchhoff’s Current Law formula is:</div>
+
I<sub>1</sub> + I<sub>2</sub> = I<sub>3</sub>.
  
<div style="color:#000000;">I<sub>1</sub> + I<sub>2</sub> = I<sub>3</sub>.</div>
+
1.25mA + 1.25mA = 2.5mA
  
<div style="color:#000000;">1.25mA + 1.25mA = 2.5mA</div>
 
  
<div style="color:#000000;"></div>
+
According to Kirchhoff’s current Law formula, at Junction B, current I1 and I2 enter and current I3 leaves.  
<div style="color:#000000;">According to Kirchhoff’s current Law formula, at Junction B, current I1 and I2 enter and current I3 leaves. </div>
+
  
<div style="color:#000000;">Similarly, at junction F, current I<sub>3</sub> enters, and I<sub>1</sub> and I<sub>2</sub> leave.</div>
+
Similarly, at junction F, current I<sub>3</sub> enters, and I<sub>1</sub> and I<sub>2</sub> leave.
  
<div style="color:#000000;">Thus Kirchhoff’s current law is verified.</div>
+
Thus Kirchhoff’s current law is verified.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
||  
 
||  
 
|| This brings us to the end of the tutorial. Let us summarize.
 
|| This brings us to the end of the tutorial. Let us summarize.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| Slide 10:
 
|| Slide 10:
  
 
Summary  
 
Summary  
 
|| In this tutorial, we learnt about
 
|| In this tutorial, we learnt about
* <div style="margin-left:1.27cm;margin-right:0cm;">Kirchhoff’s Voltage Law.</div>
+
* Kirchhoff’s Voltage Law.
* <div style="margin-left:1.27cm;margin-right:0cm;">Kirchhoff’s Current Law.</div>
+
* Kirchhoff’s Current Law.
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
 
|| '''Slide 11:'''
 
|| '''Slide 11:'''
  
Line 282: Line 279:
 
|| As an assignment,
 
|| As an assignment,
  
* <div style="margin-left:1.27cm;margin-right:0cm;">In the above circuit, change the value of V1 to 12V and value of R5 to 4 Kilo Ohms.</div>
+
* In the above circuit, change the value of V1 to 12V and value of R5 to 4 Kilo Ohms.
* <div style="margin-left:1.27cm;margin-right:0cm;">Keep the values same for other components in the circuit.</div>
+
* Keep the values same for other components in the circuit.
* <div style="margin-left:1.27cm;margin-right:0cm;">Verify Kirchhoff's Voltage and Current laws</div>
+
* Verify Kirchhoff's Voltage and Current laws
  
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
 
|| '''Slide 12:'''
 
|| '''Slide 12:'''
  
Line 293: Line 290:
  
 
Please download and watch it.
 
Please download and watch it.
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
 
|| '''Slide 13&nbsp;:'''
 
|| '''Slide 13&nbsp;:'''
  
Line 300: Line 297:
  
 
For more details, please write to us.
 
For more details, please write to us.
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
 
|| '''Slide 14: '''
 
|| '''Slide 14: '''
  
 
'''Forum for specific questions'''
 
'''Forum for specific questions'''
 
|| Please post your timed queries in this forum.
 
|| Please post your timed queries in this forum.
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
 
|| '''Slide 15:'''
 
|| '''Slide 15:'''
  
 
'''Acknowledgement'''
 
'''Acknowledgement'''
 
|| Spoken Tutorial project was established by the Ministry of Education(MoE), Govt of India
 
|| Spoken Tutorial project was established by the Ministry of Education(MoE), Govt of India
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
 
|| '''Slide 16:'''
 
|| '''Slide 16:'''
  

Revision as of 16:54, 6 December 2023

Visual Cue Narration
Slide:1

Title slide

Welcome to the Spoken tutorial on Kirchhoff's Law using Circuitjs simulator.
Slide 2:

Learning Objectives

In this tutorial, we will learn about,
  • Kirchhoff’s Voltage Law and
  • Kirchhoff’s Current Law.
Slide 3:

System Requirement

To record this tutorial, I am using:
  • Ubuntu Linux 20.04 OS
  • CircuitJS Application
Slide 4:

Prerequisite

To follow this tutorial, you should have a basic knowledge of,
  • Electrical circuits.
Slide 5:

Kirchhoff's Voltage Law

Voltage Law.png

Kirchhoff’s Voltage Law states that,
  • The sum of all voltages in a closed loop is zero.

Where I is the current flowing in the circuit.

Note : Voltage drops across resistors R1, R2 and R3 are calculated as I x R1, I x R2 and I x R3 respectively.

Slide 6:

Kirchhoff’s Current Law Current Law.png

Kirchhoff’s Current Law states that,
  • The sum of currents entering the junction is equal to the sum of currents leaving the junction.

I1 and I2 are entering currents at the junction and I3, I4 and I5 are leaving currents.

Kirchhoff’s Law.png

Let’s make this complex circuit with 2 DC sources to verify Kirchhoff's Voltage and Current Laws.
For Kirchhoff’s Law circuit, we require,
  • 5 resistors of 1 Kilo Ohms.
  • 2 DC power supply of 5 Volts.

Point to the menu bar.

Click on File and select New Blank Circuit.

Let us open the circuitJS interface.

In the menu bar, click on File and select New Blank Circuit.

Click on the Draw option and select Add resistor.

Click and drag to draw a resistor.

Click on the Draw option and select Add resistor.

Click and drag to draw a resistor as shown.

By default, the value of this resistor is 1 Kilo Ohm.

Duplicate the resistor.

Right-click on the resistor, >> select the Duplicate option.

We need a total of 5 resistors of the same value for the circuit.

Right-click on the resistor, then select the Duplicate option.

This will generate a resistor of the same value.

Repeat this process until you have 5 resistors in the work area.

Connect and place all the resistors in the same way as shown here.

Use Add Text option for label


Use the Add Text option to give labels to these resistors.

Give labels as R1, R2, R3, R4, and R5 respectively as shown here.

Show the path to find the DC power supply

Click on Draw, go to Inputs and Sources, >> select Add Voltage Source (2-terminal).

Now we need two DC power supplies to power up the circuit.

Click on Draw, go to Inputs and Sources, and select Add Voltage Source (2-terminal).

Drag and draw the DC power supply in the work area.

Duplicate the DC power supply,

Right-click on the DC power supply, >> choose the Duplicate option.

Right-click on the DC power supply, and choose the Duplicate option.

Now you'll have two DC power supplies in the work area.

Arrange and place the DC power supplies in the circuit as shown here.

Name the power supplies Refer to the circuit diagram shown above to check the polarity of the DC power source.

Use the Add Text option to label these power supplies.

Name the power supplies as V1 and V2 as shown here.

For better understanding, we will denote a letter to each of the junctions in the circuit.

Use the Add Text option to denote a letter.

Name these junctions as A, B, C, D, F and G as shown.

Point to ABFG circuit The circuit ABFG, consists of resistors R1, R5, R3 and power supply V1.

The current I1 flows in a clockwise direction in this circuit.

Point to CBFD circuit The circuit CBFD, consists of resistors R2, R5, R4 and power supply V2.

The current I2 flows in an anti-clockwise direction in this circuit.

And, the current I3 flows through R5 resistor.

point the cursor on the specific resistor To find the characteristics, point the cursor on the specific resistor.

The resistor characteristics are shown at the bottom right corner.

Slide 7:

Kirchoff's law final slide.png

According to Kirchhoff's voltage law

For circuit ABFG, the equation is

V1 = I1R1 + I3R5 + I1R3

For circuit CBFD, the equation is

V2 = - (I2R2 + I3R5 + I2R4)

Since current I2 flows in anti-clockwise direction, we have to assign a -(minus)sign in the equation.

Let us note down the current flowing through various resistors.

To find the value of I1, click on the R1 or R3 resistor.

We can see that the value of I1 is 1.25 milli-Ampere at the right bottom corner of the screen.

Likewise, click on the R2 or R4 resistors.

The value of I2 is 1.25 milli-Ampere.

Similarly, to find the value of I3, click on the R5 resistor.

The value of I3 is 2.5 milli-Ampere.

In this circuit, value of all resistors, that is, R1, R2, R3, R4, and R5 is 1 Kilo Ohm.
Now let us do the calculation and find the value of V1 and V2.

And also check if Kirchhoff's voltage law holds true for this circuit.

Slide 8:

Verification of Kirchhoff's voltage law

V1 = I1R1 + I3R5 + I1R3,

V1 = 1.25 + 2.5 + 1.25

= 5

V2 = - (I2R2 + I3R5 + I2R4)

V2 = -(1.25 + 2.5 + 1.25 )

= -5

Verification of Kirchhoff's voltage law:

After substituting the above values,

V1 is 5 volts V2 is -5 volts

Kirchhoff’s Voltage Law formula is:

V = V1 + V2 V = 5 + (- 5 ) ( Five plus minus of five) V = 0

Here, the sum of all the voltages in the closed circuit is 0.

Hence Kirchhoff’s voltage law is verified.

Slide 9:

Verification of Kirchhoff’s Current Law I1 = 1.25mA I2 = 1.25mA I3 = 2.5mA

Image:

Kirchoffs law final slide.png

Verification of Kirchhoff’s Current Law:

Substitute the above values in the current law equation.

Kirchhoff’s Current Law formula is:

I1 + I2 = I3.

1.25mA + 1.25mA = 2.5mA


According to Kirchhoff’s current Law formula, at Junction B, current I1 and I2 enter and current I3 leaves.

Similarly, at junction F, current I3 enters, and I1 and I2 leave.

Thus Kirchhoff’s current law is verified.

This brings us to the end of the tutorial. Let us summarize.
Slide 10:

Summary

In this tutorial, we learnt about
  • Kirchhoff’s Voltage Law.
  • Kirchhoff’s Current Law.
Slide 11:

Assignment 1

As an assignment,
  • In the above circuit, change the value of V1 to 12V and value of R5 to 4 Kilo Ohms.
  • Keep the values same for other components in the circuit.
  • Verify Kirchhoff's Voltage and Current laws
Slide 12:

About Spoken Tutorial project

The video at the following link summarizes the Spoken Tutorial project.

Please download and watch it.

Slide 13 :

Spoken Tutorial workshops

The Spoken Tutorial Project Team conducts workshops and gives certificates.

For more details, please write to us.

Slide 14:

Forum for specific questions

Please post your timed queries in this forum.
Slide 15:

Acknowledgement

Spoken Tutorial project was established by the Ministry of Education(MoE), Govt of India
Slide 16:

Thank you

This tutorial has been contributed by FOSSEE and Spoken Tutorial Project, IIT Bombay.

Thank you for watching.

Contributors and Content Editors

Madhurig, Nirmala Venkat