Apps On Physics

From Script | Spoken-Tutorial
Revision as of 16:00, 18 November 2019 by Karwanjehimanshi95 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Apps on physics simulations are for teaching and learning basic physics.

Apps on Physics can be downloaded from https://www.walter-fendt.de/html5/phen/


Contributors, Content Editors and Reviewers

The Spoken Tutorial effort for Apps on Physics is being contributed by Ms. Himanshi Karwanje and Ms. Madhuri Ganapathi from IIT Bombay.

Contents

Basic Level

1. Simple Machines

  • Define a Pulley
  • Demonstrate the working of a pulley system
  • Calculate the necessary force to pull the load
  • Demonstrate the working of a lever
  • Define a torque
  • Demonstrate how to achieve a balance condition


2. Inclined Plane

  • Define an inclined plane
  • Uses of an inclined plane
  • Explanation of Inclined Plane App interface
  • Demonstrate the motion of the load on an inclined plane
  • About force vectors
  • Change in the angle of inclination from 0 degrees to 90 degrees
  • About inclination angle
  • Resolution of parallel and perpendicular vectors
  • Calculate the resolution of gravity forces
  • Observe the effect of friction on an inclined plane


3. Linear Motion

  • Demonstrate the motion of a car with a constant acceleration
  • State Newton's first law of motion
  • Explain the following graphs
    • Position v/s time
    • Velocity v/s time
    • Acceleration v/s time
  • Calculate the position and velocity using equation of motion
  • Demonstrate the setup of an air track glider
  • State Newton's second law of motion
  • Verify Newton's second law of motion


4. Forces

  • About the App interface
  • Demonstrate addition of vectors
  • Explain triangle law of vectors
  • Change the magnitude of vectors and show the formation of resultant vector
  • Explain polygon law of vectors
  • Define equilibrium of forces
  • Show a simple experiment to achieve an equilibrium condition
  • Show changes in the angles as force changes


5. Kepler’s laws

  • Explanation of Kepler's Laws App interfaces
  • Define Kepler’s first law
  • Demonstrate Kepler's first law
  • Define Aphelion and Perihelion distances
  • Calculate Aphelion and Perihelion distances
  • About Halley’s comet
  • Define orbital period
  • Define Kepler’s second law
  • Demonstrate Kepler's second law
  • Show the direction of velocity vector
  • Compare the velocities of different planets


6. Circular motion

  • Explain the App interface
  • Demonstrate uniform circular motion
  • Define uniform circular motion
  • Show how position, velocity, acceleration and force vary with time
  • Define angular velocity and angular acceleration
  • Solve numericals based on angular velocity and angular acceleration
  • Demonstrate the motion of a Carousel
  • Change different parameters shown in the Carousel App
  • Define centripetal force
  • Solve a numerical based on centripetal force

Contributors and Content Editors

Karwanjehimanshi95, Madhurig, Nancyvarkey