Scilab/C4/Integration/Khasi
From Script | Spoken-Tutorial
Revision as of 22:52, 17 August 2017 by Meboreen Mary (Talk | contribs)
Time | Narration |
00:01 | Paralok, ngi pdiangsngewbha ia phi sha ka Spoken Tutorial halor ka Composite Numerical Integration. |
00:07 | Ha kaba kut jong kane ka jinghikai, phin sa nang kumno ban: |
00:11 | Develop ia ka Scilab code na ka bynta bun jait ki Composite Numerical Integration algorithms |
00:17 | Divide ia ka integral ha ki equal intervals |
00:21 | Apply ia ka algorithm sha man kawei ka interval bad |
00:24 | Khein ia ka composite value of the integral. |
00:28 | Ban record ia kane ka jinghikai, nga pyndonkam |
00:30 | Ubuntu 12.04 kum ka operating system |
00:34 | Ryngkat bad ka Scilab 5.3.3 version. |
00:38 | Shwa ban pyrshang ia kane ka jinghikai, u ne ka nongpule kidei ban don ia ka jingtip ba donkam jong |
00:42 | Ka Scilab bad |
00:44 | Integration using Numerical Methods. |
00:47 | Na ka bynta ka Scilab, sngewbha peit ia ki jinghikai ba iadei ba don ha ka Spoken Tutorial website. |
00:55 | Numerical Integration kadei ka |
00:58 | Jingpule halor kumno ba u numerical value jong ka integral lah ban wad. |
01:03 | La pyndonkam ia u haba u mathematical integration ba dei thik um don. |
01:08 | U antad ia u definite integral na ki values jong ka integrand. |
01:15 | To ngin pule ia ka Composite Trapezoidal Rule. |
01:18 | Kane ka rule kadei ka tnad baiar jong ka trapezoidal rule. |
01:22 | Ngi phiah ia ka interval a comma b ha ki n intervals ba iaryngkat. |
01:29 | Nangta, h equals to b minus a divided by n kadei ka common lengths jong ki intervals. |
01:36 | Nangta ka composite trapezoidal rule la ai da: |
01:41 | The integral of the function F of x in the interval a to b is approximately equal to h multiplied by the sum of the values of the function at x zero to x n |
01:57 | To ngin solve ia kawei ka nuksa da kaba pyndonkam ia ka composite trapezoidal rule. |
02:02 | Shu shim ia u number jong ki intervals n is equal to 10 (n=10) |
02:09 | To ngin peit ia u code na ka bynta ka Composite Trapezoidal Rule ha ka Scilab editor |
02:16 | Nyngkong ngi define ia ka function ryngkat bad ki parameters f , a , b , n. |
02:22 | f u thew ia ka function ba ngi hap ban solve. |
02:25 | a udei u lower limit jong ka integral, |
02:28 | b kadei ka upper limit jong ka integral bad |
02:31 | n udei u number jong ki intervals. |
02:34 | linspace function la pyndonkam ban create shiphew tylli ki intervals ba iaryngkat hapdeng zero bad one. |
02:42 | Ngi wad ia u value jong ka integral bad buh ia u ha I one. |
02:49 | Nion ha Execute ha ka Scilab editor bad jied Save and execute ia u code. |
03:02 | Define ia ka example function da kaba type: |
03:05 | d e f f open parenthesis open single quote open square bracket y close square bracket is equal to f of x close quote comma open quote y is equal to one by open parenthesis two asterisk x plus one close parenthesis close quote close parenthesis |
03:30 | Nion Enter . Type Trap underscore composite open parenthesis f comma zero comma one comma ten close parenthesis |
03:41 | Nion Enter . |
03:43 | Ka jubab la pyni ha ka console . |
03:47 | Nangta ngin sa pule ia ka Composite Simpson's rule. |
03:51 | Ha kane ka rule, ngi thep ia ka interval a comma b sha ka n is greater than 1 sub-intervals kaba ka jingjrong ka iaryngkat . |
04:03 | Apply Simpson's rule sha man kawei ka interval. |
04:06 | Ngi ioh ia u value jong ka integral u ban dei: |
04:10 | h by three multiplied by the sum of f zero, four into f one , two into f two to f n. |
04:19 | To ngin solve ia kawei ka nuksa da kaba pyndonkam ia ka Composite Simpson's rule. |
04:24 | Ngi ai ia ka function one by one plus x cube d x in the interval one to two. |
04:32 | Ai ba ka number jong ki intervals kan dei twenty . |
04:37 | To ngin phai sha u code na ka bynta ka Composite Simpson's rule. |
04:42 | Nyngkong eh ngi define ia ka function ryngkat ki parameters f , a , b , n. |
04:49 | f ka thew sha ka function ba ngi hap ban solve, |
04:52 | a udei u lower limit jong ka integral, |
04:56 | b udei u upper limit jong ka integral bad |
04:58 | n udei u number jong ki intervals. |
05:02 | Ngi wad artylli ki sets jong ki points |
05:04 | Ngi wad ia u value jong ka function ryngkat bad uwei u set bad multiply ia u da two. |
05:10 | Bad kawei ka set, ngi wad ia u value bad multiply ia u da four. |
05:16 | Ngi sum ia kine ki values bad muliply ia u da h by three and store the final value in I . |
05:24 | To ngin execute ia u code. |
05:28 | Save bad execute ia ka file Simp underscore composite dot s c i. |
05:39 | Nyngkong to ngan clear ia ka screen. |
05:42 | Define ia ka function ba la ai ha ka nuksa da kaba type: |
05:45 | d e f f open parenthesis open single quote open square bracket y close square bracket is equal to f of x close quote comma open quote y is equal to one divided by open parenthesis one plus x cube close parenthesis close quote close parenthesis |
06:12 | Nion Enter . |
06:14 | Type Simp underscore composite open parenthesis f comma one comma two comma twenty close parenthesis |
06:24 | Nion Enter . |
06:26 | Ka jubab la pyni ha ka console. |
06:31 | To mynta ngin peit ia ka Composite Midpoint Rule. |
06:35 | Ka integrate ia ki polynomials jong ka degree one lane duna ia one. |
06:40 | Divide ia ka interval a comma b sha ki sub-intervalsba iaryngkat ka width. |
06:49 | Wad ia u midpoint jong man kawei ka interval ba la kdew da x i . |
06:54 | Ngi wad ia ka sum jong ki values jong ka integral ha man uwei u midpoint. |
07:00 | To ngin solve ia kane ka problem da kaba pyndonkam ia ka Composite Midpoint Rule. |
07:05 | We are given a function one minus x square d x in the interval zero to one point five. |
07:15 | Ngi shim n is equal to twenty . |
07:18 | To ngin peit ia u code na ka bynta ka Composite Midpoint rule. |
07:24 | Nyngkong ngi define ia ka function ryngkat ki parameters f , a , b , n. |
07:30 | f ka thew sha ka function ba ngi hap ban solve, |
07:33 | a udei u lower limit jong ka integral, |
07:36 | b udei u upper limit jong ka integral bad |
07:39 | n udei u number jong ki intervals. |
07:41 | Ngi wad ia u midpoint jong man kawei ka interval. |
07:45 | Wad ia u value jong ka integral ha man uwei u midpoint bad nangta wad ia ka sum bad buh ia ka ha I. |
07:53 | To mynta ngin ia solve ia ka nuksa. |
07:55 | Save bad execute ia ka file mid underscore composite dot s c i. |
08:04 | To ngan clear ia ka screen. |
08:08 | Ngi define ia ka function ba la ai ha ka nuksa da kaba type: |
08:13 | d e f f open parenthesis open single quote open square bracket y close square bracket is equal to f of x close quote comma open quote y is equal to one minus x square close quote close parenthesis |
08:37 | Nion Enter. |
08:39 | Nangta type mid underscore composite open parenthesis f comma zero comma one point five comma twenty close parenthesis |
08:53 | Nion Enter. Ka jubab la pyni ha ka console. |
08:59 | To ngin batai kyllum ia kane ka jinghikai. |
09:02 | Ha kane ka jinghikai ngi la pule ban: |
09:04 | Develop ia u Scilab code na ka bynta kanumerical integration |
09:08 | Wad ia u value jong ka integral. |
09:11 | Peit ia ka video ba don ha ka link ba la pyni harum. |
09:15 | Ka kyllum lang ia ka Spoken Tutorial project. |
09:18 | Lada phim don ia ka bandwidth kaba biang, phi lah ban shu download bad peit ia ka. |
09:23 | Ka kynhun jong ka Spoken Tutorial |
09:25 | Ka pynlong ia ki workshops da kaba pyndonkam da ki spoken turorials |
09:29 | Ka ai certificates sha kito kiba pass ha ka online test. |
09:32 | Na ka bynta kham bun ki jingtip ba bniah, sngewbha thoh sha ka contact@spoken-tutorial.org. |
09:40 | Spoken Tutorial Project kadei shibynta jong ka Talk to a Teacher project. |
09:45 | La kyrshan ia ka da ka National Mission on Eduction lyngba ka ICT, MHRD, Sorkar India |
09:52 | Kham bun ki jingtip halor kane ka mission kidon ha http://spoken-tutorial.org/NMEICT-Intro. |
10:03 | Nga i Meboreen na Shillong nga pynkut ia kane. Khublei shibun. |