Geogebra/C3/Radian-Measure/Kannada

From Script | Spoken-Tutorial
Revision as of 17:02, 22 February 2017 by Pratik kamble (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Time Narration
00:01 ನಮಸ್ಕಾರ. ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ ನಾವು Geogebra (ಜಿಯೊಜಿಬ್ರಾ) ವನ್ನು ಬಳಸಿ, Radians and Sectors (ರೇಡಿಯನ್ಸ್ ಹಾಗೂ ಸೆಕ್ಟರ್ಸ್) ಗಳ ಮೇಲೆ ಕೆಲಸ ಮಾಡುವೆವು.
00:07 ಈ ಟ್ಯುಟೋರಿಯಲ್, ಜಿಯೊಜಿಬ್ರಾದ ‘ಇನ್ಪುಟ್ ಬಾರ್’ ಹಾಗೂ ಅದರಲ್ಲಿಯ ‘ಕಮಾಂಡ್’ಗಳ ಬಗ್ಗೆ ಇರುತ್ತದೆ. ರೇಡಿಯನ್ಸ್ ನ ಕುರಿತು ಇರುವ ಒಂದು ಪಾಠದ ಮೂಲಕ, ನಿಮಗೆ ಇದನ್ನು ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು ಈ ಟ್ಯುಟೋರಿಯಲ್ ನ ಉದ್ದೇಶವಾಗಿದೆ.
00:15 ನೀವು ಜಿಯೊಜಿಬ್ರಾಗೆ ಹೊಸಬರಿದ್ದರೆ, ದಯವಿಟ್ಟು spoken-tutorial.org ವೆಬ್ಸೈಟ್ ಮೇಲಿನ Introduction to Geogebra ಹಾಗೂ Angles and Triangles Basics ಗಳನ್ನು ನೋಡಿ.
00:25 ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ, ನಾನು Ubuntu version 10.04 LTS ಮತ್ತು Geogebra version 3.2.40. (ಜಿಯೊಜಿಬ್ರಾ ವರ್ಷನ್ 3.2.40.) ಗಳನ್ನು ಬಳಸಿದ್ದೇನೆ.
00:35 ಈ ಪಾಠದಲ್ಲಿ, ನಾವು: ರೇಡಿಯನ್ ಎಂದರೇನು ಹಾಗೂ ಅದನ್ನು ಹೇಗೆ ‘ಡ್ರಾ’ ಮಾಡುವುದು,
00:39 ಆರ್ಕ್ ನ ಉದ್ದಳತೆ ಹಾಗೂ ಅದು ರೂಪಿಸುವ ಕೋನದ ನಡುವಿನ ಸಂಬಂಧ ಇವುಗಳನ್ನು ತಿಳಿಯುವೆವು.
00:44 ಮತ್ತು ಸೆಕ್ಟರ್ ನ ವಿಸ್ತೀರ್ಣವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಒಂದು ಅಸೈನ್ಮೆಂಟ್ ಅನ್ನು ಪೂರ್ಣಗೊಳಿಸುವೆವು.
00:49 ನಾವು ಜಿಯೊಜಿಬ್ರಾದಲ್ಲಿ ಈ ಕೆಳಗಿನ ಟೂಲ್ಗಳನ್ನು ಬಳಸುವೆವು.

Circle with Center and Radius (ಸರ್ಕಲ್ ವಿತ್ ಸೆಂಟರ್ ಆಂಡ್ ರೇಡಿಯಸ್) Circular Arc with Centre between Two Points (ಸರ್ಕ್ಯುಲರ್ ಆರ್ಕ್ ವಿತ್ ಸೆಂಟರ್ ಬಿಟವೀನ್ ಟು ಪಾಯಿಂಟ್ಸ್ ) ಮತ್ತು Segment between Two Points (ಸೆಗ್ಮೆಂಟ್ ಬಿಟವೀನ್ ಟು ಪಾಯಿಂಟ್ಸ್).

01:00 ಡ್ರಾಯಿಂಗ್ ಕಮಾಂಡ್ ಗಳನ್ನು ಇನ್ನೊಂದು ವಿಧದಲ್ಲಿ, ಎಂದರೆ, Input bar (ಇನ್ಪುಟ್ ಬಾರ್) ನಲ್ಲಿ, ಅವುಗಳನ್ನು ಟೈಪ್ ಮಾಡುವುದರ ಮೂಲಕ ಸಹ ಬಳಸಲು ಸಾಧ್ಯವಿದೆ.
01:11 ಈಗ, ಈ ಜಿಯೊಜಿಬ್ರಾ ವಿಂಡೋದಲ್ಲಿ, Circle with Centre and Radius ಎನ್ನುವುದನ್ನು ಬಳಸಿ, 5 ಯೂನಿಟ್ ತ್ರಿಜ್ಯದ ಒಂದು ವರ್ತುಲವನ್ನು ನಾವು ರಚಿಸೋಣ.
01:18 ನಾನು Circle with Centre and Radius ಎನ್ನುವುದರ ಮೇಲೆ ಕ್ಲಿಕ್ ಮಾಡುತ್ತೇನೆ. ನಾವು ‘ಓರಿಜಿನ್’ಅನ್ನು ಕೇಂದ್ರಬಿಂದುವೆಂದು ಹಾಗೂ ತ್ರಿಜ್ಯವನ್ನು 5 ಯುನಿಟ್ಗಳೆಂದು ಆರಿಸಿಕೊಳ್ಳುತ್ತೇವೆ.
01:28 ಈಗ ನಾನು ವರ್ತುಲದ ಮೇಲೆ B ಹಾಗೂ C ಎನ್ನುವ ಎರಡು ಬಿಂದುಗಳನ್ನು ಗುರುತಿಸುವೆನು.
01:36 ಈಗ ನಾವು ಈ ಎರಡು ಬಿಂದುಗಳ ನಡುವೆ ಆರ್ಕ್ ಅನ್ನು ಪೂರ್ತಿಗೊಳಿಸುವೆವು. ಆರ್ಕ್ ಅನ್ನು ರಚಿಸಲು, ನಾನು Circular Arc with Centre between Two Points ಎನ್ನುವುದರ ಮೇಲೆ ಕ್ಲಿಕ್ ಮಾಡುತ್ತೇನೆ.
01:47 ನಾನು ಕೇಂದ್ರಬಿಂದು A, B ಹಾಗೂ C ಬಿಂದುಗಳ ಮೇಲೆ ಕ್ಲಿಕ್ ಮಾಡುತ್ತೇನೆ. ಇದು ಆರ್ಕ್ ಅನ್ನು ಪೂರ್ತಿಗೊಳಿಸುತ್ತದೆ. ಆರ್ಕ್ ನ ಉದ್ದವು d=5.83 ಯುನಿಟ್ಸ್ ಆಗಿದೆ ಎಂದು ಗಮನಿಸಿ.
02:00 ಈಗ ನಾವು ಈ ಆರ್ಕ್ ಅನ್ನು ತೆಗೆದುಹಾಕಿ (ಡಿಲೀಟ್) ಇನ್ನೊಂದು ವಿಧದಲ್ಲಿ ರಚಿಸೋಣ. ಇಲ್ಲಿ, Input ಬಾರ್ ನಲ್ಲಿ, ಕಮಾಂಡ್ಅನ್ನು ನಮೂದಿಸುವ ಮೂಲಕ ಆರ್ಕ್ ಅನ್ನು ರಚಿಸಬಹುದು.
02:10 ಇಲ್ಲಿ, ಈ ಆಯತಾಕಾರದ ಬಾಕ್ಸ್, Input ಬಾರ್ (ಇನ್ಪುಟ್ ಬಾರ್) ಆಗಿದೆ. ಇನ್ಪುಟ್ ಬಾರ್ ನ ಬದಿಯಲ್ಲಿ, ಮೂರು ಡ್ರಾಪ್-ಡೌನ್ ಬಾಕ್ಸ್ ಗಳಿವೆ. ಇಲ್ಲಿ ನೀವು ಕೆಲವು ಫಂಕ್ಷನ್ ಗಳನ್ನು ಪರಿಚಯಿಸಬಹುದು, ಹಲವು ಪ್ಯಾರಾಮೀಟರ್ ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡಬಹುದು. ಇದು command (ಕಮಾಂಡ್) ಕೀ ಆಗಿದೆ. ಇದರಲ್ಲಿ, ಜಿಯೊಜಿಬ್ರಾ ವಿಂಡೋದಲ್ಲಿ ಡ್ರಾಯಿಂಗ್ ಗಳನ್ನು ನೀವು ಪೂರ್ಣಗೊಳಿಸಬಹುದು.
02:30 ನಾನು ಈಗ, ಇಲ್ಲಿ ‘arc’ (ಆರ್ಕ್) ಎಂದು ಟೈಪ್ ಮಾಡಲು ಆರಂಭಿಸುತ್ತೇನೆ. ಇದು ನನಗಾಗಿ ಕಮಾಂಡ್ ಅನ್ನು ಪೂರ್ಣಗೊಳಿಸಿದೆ ಎಂದು ನೀವು ನೋಡುವಿರಿ. ನಾನು ಈ ಕಮಾಂಡ್ ಅನ್ನು ಇಲ್ಲಿ, ಡ್ರಾಪ್-ಡೌನ್ ಬಾಕ್ಸ್ ನಲ್ಲಿ, ಸಹ ಹುಡುಕಬಹುದು.
02:41 ನಾನು ಆರ್ಕ್ ನ ಮೇಲೆ ಕ್ಲಿಕ್ ಮಾಡುತ್ತೇನೆ; ಕಮಾಂಡ್, ಸ್ಕ್ವೇರ್ ಬ್ರಾಕೆಟ್ ಗಳೊಂದಿಗೆ ಇಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುವುದನ್ನು ನೀವು ನೋಡುವಿರಿ. ನಾನು ಸ್ಕ್ವೇರ್ ಬ್ರಾಕೆಟ್ ಗಳ ಮಧ್ಯದಲ್ಲಿ ಕ್ಲಿಕ್ ಮಾಡಿ, Enter ಅನ್ನು ಒತ್ತಿದರೆ, ಈ ಕಮಾಂಡ್ ಗಾಗಿ ಇರುವ ಸಿಂಟ್ಯಾಕ್ಸ್, ಇಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುವುದು.
02:57 ಆರ್ಕ್ ಗಾಗಿ ಈಗ ನಾವು ಬಳಸಲಿರುವ ಸಿಂಟ್ಯಾಕ್ಸ್, ವರ್ತುಲ ಹಾಗೂ ಎರಡು ಬಿಂದುಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುವುದಾಗಿದೆ.
03:04 ವರ್ತುಲದ ಹೆಸರು ಹಾಗೂ ಎರಡು ಬಿಂದುಗಳನ್ನು ನಾವು ಡಿಫೈನ್ ಮಾಡಬೇಕಾಗಿದೆ. ನಮಗೆ ಬೇಕಾಗಿರುವ ಆರ್ಕ್ ಈ ಎರಡು ಬಿಂದುಗಳ ನಡುವೆ ಇದೆ.
03:10 ಆಲ್ಜಿಬ್ರಾ ವ್ಯೂ ದಲ್ಲಿ, ವರ್ತುಲವನ್ನು ಸಣ್ಣಕ್ಷರ 'c' ಯಲ್ಲಿ ಹಾಗೂ arc (B,C) ಯನ್ನು ರಚಿಸಬೇಕಾಗಿರುವ ಎರಡು ಬಿಂದುಗಳನ್ನು (B ಮತ್ತು C) ದೊಡ್ಡಕ್ಷರದಲ್ಲಿ ಉಲ್ಲೇಖಿಸಲಾಗಿದೆ ಎಂದು ನಾವು ನೋಡಬಹುದು.
03:24 ಆದ್ದರಿಂದ ಇಲ್ಲಿ, ನಾವು ಕಮಾಂಡ್ ಅನ್ನು Arc[c,B,C] ಎಂದು ಟೈಪ್ ಮಾಡಿ Enter ಅನ್ನು ಒತ್ತುವೆವು. ಜಿಯೊಜಿಬ್ರಾ, ‘ಕೇಸ್ ಸೆನ್ಸಿಟಿವ್’ ಆಗಿದೆ.
03:37 ನಾವು ಜೋಡಿಸಿದ ಆರ್ಕ್ ನ ಬಣ್ಣ ಹಾಗೂ ದಪ್ಪವನ್ನು ಇಲ್ಲಿ, object properties ನಿಂದ, ಈಗ ಬದಲಾಯಿಸೋಣ.
03:46 ನಾವು Color ಗೆ ಹೋಗಿ Red ಎನ್ನುವೆವು. Style ನಿಂದ ನಾವು ದಪ್ಪವನ್ನು ಹೆಚ್ಚಿಸುತ್ತೇವೆ.
04:05 ಆರ್ಕ್, ಈಗ ಕೆಂಪುಬಣ್ಣವಿದ್ದು, ದಪ್ಪವಾಗಿ ಎದ್ದುಕಾಣುತ್ತಿದೆ ಎನ್ನುವುದನ್ನು ಗಮನಿಸಿ.
04:11 ಈಗ, ನಾವು AB ಹಾಗೂ AC ಎನ್ನುವ ಎರಡು ಗೆರೆಗಳನ್ನು (line segments) ಎಳೆಯುವೆವು. ಮತ್ತೆ ಇದನ್ನು ನಾವು ಎರಡು ವಿಧದಲ್ಲಿ ಮಾಡುವೆವು.
04:17 ನಾವು ಇಲ್ಲಿ, Segments between Two Points ಎನ್ನುವ ಟೂಲ್ನ ಮೇಲೆ ಮತ್ತು A ಹಾಗೂ B ಗಳ ಮೇಲೆ ಕ್ಲಿಕ್ ಮಾಡುತ್ತೇವೆ. ಇದು AB ಎನ್ನುವ ಸೆಗ್ಮೆಂಟ್ ಅನ್ನು ಪೂರ್ಣಗೊಳಿಸುತ್ತದೆ.
04:28 ಸೆಗ್ಮೆಂಟ್ ಗಾಗಿ, ‘ಇನ್ಪುಟ್ ಬಾರ್’ನಿಂದ ಸಹ ನಾವು ಕಮಾಂಡ್ಅನ್ನು ಎಂಟರ್ ಮಾಡಬಹುದು. ಸೆಗ್ಮೆಂಟ್ AC ಯನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ನಾವು Segment[A,C] ಎಂದು ಎಂಟರ್ ಮಾಡುವೆವು.
04:40 ಈಗ ನಾವು ಆರ್ಕ್ BC ಯನ್ನು ಪೂರ್ಣಗೊಳಿಸಿದ್ದೇವೆ, AB ಹಾಗೂ AC ಸೆಗ್ಮೆಂಟ್ ಗಳನ್ನು ಮತ್ತು ಸೆಕ್ಟರ್ BAC ಯನ್ನು ರಚಿಸಿದ್ದೇವೆ.
04:47 ಈಗ ನಾವು, A ದಲ್ಲಿ ಆರ್ಕ್ BC ಯಿಂದ ರೂಪಿಸಲ್ಪಟ್ಟ ಕೋನವನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು. ನಾವು ಈ ಕೋನವನ್ನು ‘α’ ಎಂದು ಕರೆಯುವೆವು. ಇದನ್ನು ನಾವು ಇಲ್ಲಿಯ ಡ್ರಾಪ್-ಡೌನ್ ಬಾಕ್ಸ್ ನಿಂದ ಆರಿಸಿಕೊಳ್ಳುವೆವು.
04:58 ‘ಆಂಗಲ್ ಕಮಾಂಡ್’, angle[B, A, C] ಆಗಿದೆ.
05:10 ಜಿಯೊಜಿಬ್ರಾದಲ್ಲಿಯೂ ಸಹ, ಕೋನಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುವಾಗ ಅವುಗಳನ್ನು ಹೆಸರಿಸುವ ಪ್ರಮಾಣಿತ ರೂಢಿಯನ್ನು ನಾವು ಅನುಸರಿಸುವೆವು.
05:18 ಇಲ್ಲಿ, ಕೇಂದ್ರಬಿಂದುವಿನಲ್ಲಿ ರೂಪಿಸಲ್ಪಟ್ಟ ‘α’ದ ವ್ಯಾಲ್ಯೂ 66.78 ಅಂಶಗಳಾಗಿದೆ ಎನ್ನುವುದನ್ನು ನಾವು ಗಮನಿಸುತ್ತೇವೆ.
05:30 ಈಗ, ಕೋನವನ್ನು ರೂಪಿಸುವ ಆರ್ಕ್ ನ ಉದ್ದವು, ಆ ವರ್ತುಲದ ತ್ರಿಜ್ಯದಷ್ಟೇ ಇದ್ದಾಗ, ಕೇಂದ್ರಬಿಂದುವಿನಲ್ಲಿ ರೂಪಿಸಲ್ಪಟ್ಟ ಆ ಕೋನವನ್ನು ಒಂದು ರೇಡಿಯನ್ ಎಂದು ಹೇಳಲಾಗುತ್ತದೆ.
05:40 ನಾವು ಕೋನದ ಯುನಿಟ್ ಅನ್ನು ರೇಡಿಯನ್ಸ್ ಎಂದು ಡಿಫೈನ್ ಮಾಡಿದರೆ, ಇಲ್ಲಿ Options ಗೆ ಹೋಗಿ, Angle Units ಅನ್ನು Radians ಎಂದು ಆರಿಸಿಕೊಳ್ಳಿ.
05:49 ‘α’ ದ ವ್ಯಾಲ್ಯೂ ಈಗ 1.17 rad. ಆಗಿದೆ ಎಂದು ನಾವು ನೋಡುವೆವು. ಇದನ್ನು, ಸುಮಾರು 1 rad. ಹತ್ತಿರ ತರಲು ನಾವು ಈಗ ಆರ್ಕ್ನ ಉದ್ದಳತೆಯನ್ನು ಬದಲಾಯಿಸುವೆವು.
06:04 ಆರ್ಕ್ನ ಉದ್ದಳತೆ, d=5 ಯುನಿಟ್ಸ್ ಆಗಿದೆ ಮತ್ತು ಕೇಂದ್ರಬಿಂದುವಿನಲ್ಲಿ ರೂಪಿಸಲ್ಪಟ್ಟ ಕೋನ, ‘α’, ದ ವ್ಯಾಲ್ಯೂ 1 rad. ಆಗಿದೆ ಎಂದು ಗಮನಿಸಿ.
06:17 ನಾವು 1 rad.ಅನ್ನು ಡಿಫೈನ್ ಮಾಡಿದೆವು. ಇದು, ಆರ್ಕ್ನ ಉದ್ದವು ತ್ರಿಜ್ಯದಷ್ಟೇ ಇರುವಾಗ ರೂಪಿಸಲ್ಪಡುವ ಕೋನ ಎನ್ನುವುದನ್ನು ಸಹ ನಾವು ನೋಡಿದೆವು.
06:29 1 rad. ಎಂದರೆ ಎಷ್ಟು ಡಿಗ್ರೀಗಳು (ಅಂಶಗಳು)? ನಾನು ಇದನ್ನು ಸ್ವಲ್ಪ ‘ಝೂಮ್-ಔಟ್’ ಮಾಡಿದ್ದೇನೆ.
06:41 ಈಗ, ನಾವು ಈ ಆರ್ಕ್ ನ ಉದ್ದಳತೆಯನ್ನು ಅರ್ಧವರ್ತುಲದ ಉದ್ದಕ್ಕೆ ಬದಲಾಯಿಸೋಣ; ಹೀಗಾಗಿ, ಆರ್ಕ್ ನ ಉದ್ದಳತೆಯು [π a] ಆಗಿದೆ. ಇಲ್ಲಿ, ‘a’, ವರ್ತುಲದ ತ್ರಿಜ್ಯವಾಗಿದೆ.
06:53 ಅದಕ್ಕೂ ಮೊದಲು, ನಾನು ಕೋನದ ಯುನಿಟ್ ಅನ್ನು Degrees ಎಂದು ರಿ-ಡಿಫೈನ್ ಮಾಡುವೆನು. ಏಕೆಂದರೆ, ನಮಗೆ 1 rad. (ಒಂದು ರೇಡಿಯನ್) ನ ವ್ಯಾಲ್ಯೂವನ್ನು ಡಿಗ್ರೀಗಳಲ್ಲಿ ಕಂಡುಹಿಡಿಯಬೇಕಾಗಿದೆ.
07:03 ಆರ್ಕ್ ನ ಉದ್ದಳತೆಯು [π a] ಎಂದರೆ ಅರ್ಧವರ್ತುಲದಷ್ಟು ಇದ್ದಾಗ, ‘α’ ದ ವ್ಯಾಲ್ಯೂ 180.21 ಅಂಶಗಳಾಗಿದೆ ಎನ್ನುವುದನ್ನು ನಾವು ನೋಡುತ್ತೇವೆ.
07:13 ಮತ್ತು ಈ ವರ್ತುಲವನ್ನು ನಾನು ಪೂರ್ಣಗೊಳಿಸಿದರೆ, ‘α’ ಕೋನವು ಸುಮಾರು 360 ಅಂಶಗಳಾಗಿದೆ ಎನ್ನುವುದನ್ನು ನಾವು ನೋಡುತ್ತೇವೆ.
07:27 ಆದ್ದರಿಂದ, ಈ ಎರಡರಿಂದ, 1 rad ನ (ಒಂದು ರೇಡಿಯನ್ ನ) ವ್ಯಾಲ್ಯೂ, 57.32 ಅಂಶಗಳಾಗಿದೆ ಎಂದು ನಾವು ನೋಡುತ್ತೇವೆ.
07:35 ಈಗ, ನಾವು ಆರ್ಕ್ ನ ಉದ್ದಳತೆ, ತ್ರಿಜ್ಯ ಹಾಗೂ ರೂಪಿಸಲ್ಪಟ್ಟ ಕೋನಗಳ ಸಂಬಂಧವನ್ನು ತಿಳಿಯುವೆವು. ಅದಕ್ಕಾಗಿ, ‘ಅಲ್ಫಾ’ದ ವ್ಯಾಲ್ಯೂವನ್ನು 57.32 (ಐವತ್ತೇಳು ಪಾಯಿಂಟ್ ಮೂವತ್ತೆರಡು) ರಿಂದ ಭಾಗಿಸಿ, ಇನ್ನೊಂದು ಕೋನದ ವ್ಯಾಲ್ಯೂ 'θ' ಅನ್ನು, ರೇಡಿಯನ್ ಗಳಲ್ಲಿ, ಡಿಫೈನ್ ಮಾಡುವೆವು.
08:03 'θ' ದ ವ್ಯಾಲ್ಯೂ, ನಿಜವಾದ ಕೋನದ ವ್ಯಾಲ್ಯೂ ಆಗಿದ್ದು, ಇದು ರೇಡಿಯನ್ ಗಳಲ್ಲಿ ಇದೆ ಎಂದು ಗಮನಿಸಿ. ಆದರೆ ಇಲ್ಲಿ, ಫಾರ್ಮ್ಯಾಟ್ ಮಾಡುವ ಒಂದು ಸಮಸ್ಯೆಯ ಕಾರಣದಿಂದ ಇದು ‘ಡಿಗ್ರೀ’ ಚಿಹ್ನೆಯೊಂದಿಗೆ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತದೆ.
08:15 ನಾವು ‘θ’ (ಥೀಟಾ) ಅನ್ನು ಹೀಗೆಯೇ ಬಳಸುತ್ತಾ ಹೋಗುವೆವು; ಕೋನದ ಯುನಿಟ್ ಅನ್ನು “ರೇಡಿಯನ್” ಎಂದು ಬದಲಾಯಿಸುವುದಿಲ್ಲ. ಏಕೆಂದರೆ, ನಮಗೆ ಆರ್ಕ್ ನ ಉದ್ದಳತೆ ಹಾಗೂ ರೂಪಿಸಲ್ಪಟ್ಟ ಕೋನಗಳ ಒಂದು ಸೂತ್ರವನ್ನು ವಿವರಿಸಬೇಕಾಗಿದೆ.
08:29 ಫಾರ್ಮ್ಯಾಟ್ ಮಾಡುವ ಒಂದು ಸಮಸ್ಯೆಯ ಕಾರಣದಿಂದ, ಈ ಸೂತ್ರವನ್ನು ಈ ರೀತಿಯಲ್ಲಿ ಮಾತ್ರ ವಿವರಿಸಲು ಸಾಧ್ಯ.
08:36 ಈಗ, ಆರ್ಕ್ ನ ಉದ್ದಳತೆ ಹಾಗೂ ರೂಪಿಸಲ್ಪಟ್ಟ ಕೋನಗಳಿಗೆ ಸಂಬಂಧವನ್ನು ಕಲ್ಪಿಸುವ ಸೂತ್ರವನ್ನು ಪರಿಚಯಿಸಲು ನಾವು ಜಿಯೊಜಿಬ್ರಾ ವಿಂಡೋದಲ್ಲಿ ಟೆಕ್ಸ್ಟ್ ಅನ್ನು ಸೇರಿಸುವೆವು.
08:52 ಟೆಕ್ಸ್ಟ್ ಅನ್ನು ಹೇಗೆ ಬರೆಯುವದು ಎನ್ನುವುದರ ಪರಿಚಯಕ್ಕಾಗಿ ದಯವಿಟ್ಟು Angles and Triangles Basics ಎನ್ನುವ ಟ್ಯುಟೋರಿಯಲ್ ನೋಡಿ.
09:34 ಈಗ, ನಾನು ಆರ್ಕ್ ನ ಉದ್ದಳತೆಯನ್ನು ಬದಲಾಯಿಸಿದಾಗ ‘θ' ದ ವ್ಯಾಲ್ಯೂ ಬದಲಾಗುವದನ್ನು ನೀವು ನೋಡುವಿರಿ. ಆರ್ಕ್ ನ ಉದ್ದಳತೆ ಹಾಗೂ ರೂಪಿತ ಕೋನಗಳ ನಡುವಿನ ಸಂಬಂಧವು d=r.θ ಆಗಿರುತ್ತದೆ. ಇಲ್ಲಿ, 'd' ಎನ್ನುವುದು ಆರ್ಕ್ ನ ಉದ್ದಳತೆ, 'r' ಎನ್ನುವುದು ವರ್ತುಲದ ತ್ರಿಜ್ಯ ಹಾಗೂ 'θ', ರೇಡಿಯನ್ ಗಳಲ್ಲಿ, ಕೇಂದ್ರಬಿಂದುವಿನಲ್ಲಿ ರೂಪಿತವಾದ ಕೋನವಾಗಿರುತ್ತದೆ ಎಂದು ಗಮನಿಸಿ.
09:58 ನಾವು ಕಲಿತಿದ್ದೇವೆ ಎಂದುಕೊಂಡಿದ್ದನ್ನು ಖಚಿತಪಡಿಸಲು ಈಗ ಒಂದು ಅಸೈನ್ಮೆಂಟ್ ಅನ್ನು ನೋಡುವೆವು.
10:10 ನಾವು ಕಲಿತಿರುವುದನ್ನು ಉಪಯೋಗಿಸಿ, ಸೆಕ್ಟರ್ ನ ವಿಸ್ತೀರ್ಣ, Area = ½ a^2 θ ಹೇಗೆ ಆಗುವುದು ಎಂದು ತೋರಿಸಿ.
10:18 ಇಲ್ಲಿ, 'a' ತ್ರಿಜ್ಯವಿದ್ದು, 'θ' ಎನ್ನುವುದು ಕೇಂದ್ರಬಿಂದುವಿನಲ್ಲಿ ರೂಪಿಸಲ್ಪಟ್ಟ ಕೋನವಾಗಿದೆ ಹಾಗೂ ಇದು ರೇಡಿಯನ್ ಗಳಲ್ಲಿದೆ ಮತ್ತು ಸೂತ್ರವು Area = ½ a^2 θ ಎಂದು ಆಗಿದೆ.
10:30 ಈ ಅಸೈನ್ಮೆಂಟ್ ಅನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ಒಂದು ಸಣ್ಣ ಸೂಚನೆ: ಸೆಕ್ಟರ್ ನ ವಿಸ್ತೀರ್ಣವನ್ನು ಕ್ವಾಡ್ರಂಟ್ ಗೆ (ಕಾಲು ವೃತ್ತ) ಹೋಲಿಸಿ.
10:40 ರಚಿಸಿದ ನಂತರ ಅಸೈನ್ಮೆಂಟ್ ಹೀಗೆ ಕಾಣುವುದು. ನಮಗೆ ಇಲ್ಲಿ, ಈ ಸೆಕ್ಟರ್ ನ ವಿಸ್ತೀರ್ಣವನ್ನು ಇಲ್ಲಿಯ, ಈ ಕ್ವಾಡ್ರಂಟ್ ಗೆ ಹೋಲಿಸಿ, ಕಂಡುಹಿಡಿಯಬೇಕಾಗಿದೆ.
10:55 ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ಪ್ರಕಲ್ಪವು “ಟಾಕ್ ಟು ಎ ಟೀಚರ್” ಎನ್ನುವ ಪ್ರಕಲ್ಪದ ಒಂದು ಭಾಗವಾಗಿದೆ. ಇದು ICT, MHRD ಮೂಲಕ ಭಾರತ ಸರ್ಕಾರದ ರಾಷ್ಟ್ರೀಯ ಸಾಕ್ಷರತಾ ಮಿಷನ್ ನ ಆಧಾರವನ್ನು ಪಡೆದಿದೆ.
11:06 ಇದರ ಬಗ್ಗೆ ಹೆಚ್ಚಿನ ಮಾಹಿತಿಯನ್ನು ಈ ಕೆಳಗಿನ ವೆಬ್ಸೈಟ್ ನಲ್ಲಿ ನೀವು ನೋಡಬಹುದು.

IIT Bombay ಯಿಂದ, ಸ್ಕ್ರಿಪ್ಟ್ ನ ಅನುವಾದಕಿ ಸಂಧ್ಯಾ ಪುಣೇಕರ್ ಹಾಗೂ ಪ್ರವಾಚಕ ---------- . ವಂದನೆಗಳು

Contributors and Content Editors

Pratik kamble, Sandhya.np14