Geogebra/C3/Radian-Measure/Nepali
From Script | Spoken-Tutorial
Time | Narration | |||
---|---|---|---|---|
00:01 | नमस्कार, यो ट्युटोरिअलमा हामी जियोजेब्रामा रेडियेन र सेक्टर सम्बन्धि कार्यहरु गर्छौ | |||
00:07 | यो ट्युटोरिअलको मुख्य उद्देश्य तपाईहरुलाई जियोजेब्राको इन्पुट बार र कमाण्डहरु इन्पुट बारको प्रयोगको जानकारी दिनु रहेको छ | |||
00:15 | प्रारम्भिक जियोजेब्रा प्रयोग कर्ताहरुले स्पोकन हाइफन ट्युटोरिअल डट अर्गमा Introduction to Geogebra र Angles and Triangles Basics हेर्नु होला | |||
00:25 | यो ट्युटोरिअलमा म उबन्टु १०.०४ LTS संस्करण र जियोजेब्रा ३.२.४० संस्करण मा काम गर्दैछु | |||
00:35 | यो पाठमा हामी रेडियनको मतलब र यसलाई कसरी बनाउने भनेर जान्नेछौं | |||
00:39 | जिबाको लम्बाई र त्यसले बनाएको कोण बीचको सम्बन्ध | |||
00:44 | र सेक्टरको क्षेत्रफ़ल् निकाल्न सिक्छौ | |||
00:49 | हामी जियोजेब्रको निम्न लिखित टुल हरु प्रयोग गर्छौ | Circle with center and radius, | circular arc with centre between two points र | segment between two points
|
01:00 | चित्र बनाउने निर्देसन इन्पुट बारमा type गरेर पनि दिन सकिन्छ | |||
01:11 | यो जियोजेब्रामा अब हामी circle with centre and radius टुल प्रयोग गरि 5 अर्धव्यास भएको वृत बनाउछौँ
| |||
01:18 | म केन्द्रबिन्दुलाई ओरिजिनमा राखेर एउटा 5 अर्धव्यास सहितको वृत बनाउछु
| |||
01:28 | वृत्तमा दुइटा बिन्दुहरु राखौ ‘B' र 'C'
| |||
01:36 | अब हामी यी दुई बिन्दु बिचको चाप पुरा गर्छौँ म चाप बनाउन circular arc with centre between two pointsमा क्लिक गर्छु
| |||
01:47 | म वृत्तको मध्यबिन्दु 'A'मा क्लिक गर्छु अनि 'B'र 'C'मा पनि, यसले चाप पुरा गर्छ , याद गरौँ जिबाको लम्बाई d=5.83 रहेको छ
| |||
02:00 | हामी यो चाप हटाएर अर्कै तरिकाबाट बननाउछौँ, इन्पुट बारमा निर्देसन दिएरपनि चाप बनाउन सकिन्छ
| |||
02:10 | यहाँ रहेको आयताकार बक्स इन्पुट बार हो , इन्पुट बार नजीक तिनवोटा ड्रप डाउन बक्सहरु छन् , यहाँ तपाई केहि फंक्सन अथवा प्यारामिटरहरु बनाउन सक्नु हुन्छ र यो कमाण्ड कि हो जहाँ तपाई जियोजेब्रा विन्डोमा ड्रइंग पुरा गर्नसक्नु हुन्छ | |||
02:30 | अब म यहाँ चाप टाइप गर्न थाल्छु, तपाई हरु याद गर्न सक्नु हुन्छ, यसले मेरो लागि निर्देसन पुरा गरिदिन्छ मैले यो निर्देसन यहाँ ड्रप डाउन बक्समा पनि हेर्न सक्छु
| |||
02:41 | मैले चापमा क्लिक गर्दा तपाईहरु याद गर्न सक्नु हुन्छ, निर्देसन ठुलो ब्राकेट सहित यहाँ देखिन्छ मैले ठुलोब्राकेटको बिचमा क्लिक गरेर enter गरेपछि, निर्देशन आफै आउछ | |||
02:57 | हामीले अहिले प्रयोग गरेको चापको निर्देसन, वृत्त र दुई बिन्दुको परिचय दिनको लागि हो
| |||
03:04 | हामीले वृत्त र दुई बिन्दुहरुको परिचय दिनु पर्छा जुनको बीच हामी चाप बनाउदै छौँ
| |||
03:10 | Algebra view बाट हामी देख्न सक्छौं वृत्तलाई सानो “c”ले जनाईएको छ भने दुई बिन्दुलाई ठुलो (B,C)ले जनाईएको छ
| |||
03:24 | त्यसैले हामी यहाँ निर्देशन यसरी टाइप गर्छौ Arc[c,B,C], इन्टर थिच्नुहोस, जियोजेब्रामा क्यापिटल स्मल मिलाउनु पर्छ
| |||
03:37 | अब चापको रंग र मोटाइ परिवर्तन गरुम जुन यहाँ object propertiesबाट गर्छौं
| |||
03:46 | हामी colorमा गएर, रातो बनाउछौं styleमा गएर मोटाइ बढाउछौँ
| |||
04:05 | विचार गरौँ चाप अब बाक्लो रातो चाप बनेको छ
| |||
04:11 | अब हामी दुई रेखा खण्ड AB र AC बनाउछौँ , यसलाई पनि दुई तरिका बाट गर्छौं
| |||
04:17 | हामी 'segments between two points' टुल मा क्लिक गरौँ र 'A' र 'B'मा क्लिक गरौँ , यसले AB खण्ड पुरा गर्छा
| |||
04:28 | हामी input bar बाट निर्देसन पनि दिन सक्छौं, हामी Segment[A,C] लेखि AC खण्ड पुरा गर्छौं
| |||
04:40 | अब हामीले चाप BC पुरा गर्यौं AB र AC खण्ड बनौँ, अनि sector BAC
| |||
04:47 | अब हामी A ले BC चाप संग बनाएको कोण हेर्छौं , यो कोण लाई हामी 'α' भनौँ , हामी यसलाई यहाँ drop down boxपनि छान्न सक्छौँ
| |||
04:58 | कोण बनाउने निर्देसन [B,A,C] हो
| |||
05:10 | जियोजेब्रमा हामी निश्चित कोण नामकरण नियम पालना गर्छौं
| |||
05:18 | यहाँ हामी देख्न सक्छौं 'α' ले मध्यबिन्दुमा बनाएको कोणको मान 66.78 degrees रहेको छ
| |||
05:30 | एक radian भनेको मध्यबिन्दुमा अर्धव्यसको लम्बाई समान लम्बाई रहेको जिबाले बनाएको कोण को मान हो
| |||
05:40 | हामीले कोणलाई radians मा परिबर्तन गर्न, यहाँ विकल्पहरु मा क्लिक गरेर radians रोज्न सक्छौं
| |||
05:49 | हामी देख्न सक्छौं α को मान अहिले 1.17 rad छ, हामी चापको लम्बाई बद्लेर यसलाई 1 rad बनाउन खोज्छौँ
| |||
06:04 | याद गरौँ चापको लम्बाई d=5 रहेको छ र केन्द्रबिन्दुमा α को मान 1 rad रहेको छ
| |||
06:17 | हामीले 1 radको ब्याख्या गर्यौं र यो भनेको चापको र अर्धब्यासको लम्बाई बराबर हुदा केन्द्रबिन्दुको कोणको मान हो भनेर नि देख्यौं
| |||
06:29 | 1 radको मान degreeमा कति हुन्छ? मैले अलिकति जुम आउट गरे
| |||
06:41 | अब यो चापको लम्बाई अर्धवृत जति बनाऊ, ताकी चाप को लम्बाई [π a] बनोस, जहाँ 'a' भनेको अर्धव्यस हो
| |||
06:53 | त्यो अघि म कोण लाई degree बनाउछु किन भने हामी लाई 1 radको मान degreeमा चाहिएको छ
| |||
07:03 | हामीले देख्यौं कि चाप को लम्बाई [π a]हुदा α को मान 180.21 degrees छ
| |||
07:13 | र यदि मैले वृत पुरा गरे भने α को मान झन्न्डै झन्न्डै 360 degrees हुन्छ
| |||
07:27 | तसर्थ यी दुईबाट हामीले याद गर्न सक्छौ कि 1 radको मान 57.32 degree हुन्छ
| |||
07:35 | अब हामी चापको लम्बाई, अर्धब्यास र कोणको सम्बन्ध बारे बुझ्छौं त्यसको लागी अर्को कोण “θ”, जसको मान radianमा α/57.32 भएको मान्छौँ
| |||
08:03 | याद गरौँ “θ” कोणको मान radianमा छ. तर यहाँ प्राबिधिक गडबडी ले गर्दा degree देखिएको छ
| |||
08:15 | हामी यसरी“θ”प्रयोग गर्न जारी राख्छौं र एंगल युनिट रेडियनमा बदल्ने छैनौं, किनकि हामी आर्कको लम्बाई र बनेको कोण प्रयोग गरि एउटा फर्मुला देखाउन चाहन्छौं | |||
08:29 | फर्मेटिंगको समस्याले यो फर्मुलालाई यसरी मात्रै देखाउन सकिन्छ | |||
08:36 | अब, हामी जिओजेब्रा विन्डोमा टेक्स्ट हाल्छौं, जसले आर्कको लम्बाई र बनेको कोणको सम्बन्ध देखाउछ | |||
08:52 | कसरी टेक्स्ट लेख्ने भनि जान्न कृपया “angles and triangles basics” ट्युटोरियल हेर्नुहोला | |||
09:34 | जब मैले चापको लम्बाई मा परिबर्तन गर्छु कोण “θ” को मान परिबर्तन भएको याद गरौ, चापको लम्बाई र कोण बीच को सम्बन्ध यस्तो हुन्छ d=r.θ जहाँ where d भनेको चापको लम्बाई, r भनेको वृत्तको अर्धब्यास र “θ” केन्द्रबिन्दु मा बनेको radian कोण हो | |||
09:58 | अब हामी एउटा कार्य हेरी आफु ले बुझेको कुरालाई प्रयोगमा ल्याऊ
| |||
10:10 | हामीले सिकेको कुराहरु बाट सेक्टरको क्षेत्रफ़ल्=१/२ “a२” “θ” हुन्छ भनि साबित गर्नुहोस्
| |||
10:18 | जहाँ "a" अर्धब्यास हो,"θ" केब्द्रबिन्दुको radianकोण हो, र सुत्र क्षेत्रफ़ल् = १/२ “a२” “θ” हो
| |||
10:30 | सेक्टरको क्षेत्रफललाई क्वाडरेन्टको क्षेत्रफल संग दाँजेर काम गरौ
| |||
10:40 | यो कार्य पुरा भएपछि यस्तो देखिनु पर्छ, हामी सेक्टरको क्षेत्रफ़ल् यहाँ वृत्तको चारैतिरको भाग संग दाजेर निकाल्छौं
| |||
10:55 | म स्पोकन ट्युटोरियल प्रोजेक्टलाई आभर ब्यक्त गर्दछु जुन टक टू अ टिचर प्रोजेक्टकोको एउटा भाग हो
यसलाई नेशनल मिसन अन एजुकेसन थ्रु आइसीटी,MHRD,भारत सरकारको सहयोग रहेको छ | |||
11:06 | थप जानकारी यहाँ पाँउन सक्नुहुन्छ
सहभागिताको लागि धन्यवाद, र कारखाना नेपालबाट म मन्दिरा बिदा हुदैछु नमस्कार |