Difference between revisions of "Scilab/C4/Control-systems/English"
(Created page with ''''Title of script''': Advanced Control Systems '''Author: Manas, Shamika''' '''Keywords: control, continuous time, response''' {| style="border-spacing:0;" ! <center>Visua…') |
Nancyvarkey (Talk | contribs) |
||
Line 7: | Line 7: | ||
− | {| | + | {|border=1 |
! <center>Visual Cue</center> | ! <center>Visual Cue</center> | ||
! <center>Narration</center> | ! <center>Narration</center> | ||
Line 13: | Line 13: | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 1''' | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 1''' | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Dear | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Dear friends, welcome to the spoken tutorial on “'''Advanced Control of Continuous Time systems'''” |
− | + | ||
− | + | ||
|- | |- | ||
Line 23: | Line 21: | ||
1.Define a continuous time system: second and higher order | 1.Define a continuous time system: second and higher order | ||
− | 2.Plot response to step and sine inputs | + | 2.Plot response to '''step''' and '''sine''' inputs |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | 3.Do a '''Bode plot''' | ||
+ | 4.Study '''numer''' and '''denom Scilab functions | ||
+ | ''' | ||
+ | 5. Plot '''poles''' and '''zeros''' of a system | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 4-System Requirement slide''' | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 4-System Requirement slide''' | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| To record this tutorial, I am using '''Ubuntu 12.04''' as the operating system | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| To record this tutorial, I am using |
+ | *'''Ubuntu 12.04''' as the operating system | ||
+ | *and '''Scilab 5.3.3''' version | ||
|- | |- | ||
Line 43: | Line 41: | ||
− | For | + | For '''Scilab''', please refer to the '''Scilab''' tutorials available on the '''Spoken Tutorial '''website. |
|- | |- | ||
Line 50: | Line 48: | ||
− | So, first we have to define '''complex domain variable s'''. | + | So, first we have to define '''complex domain variable 's''''. |
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Switch to the Scilab Console Window and type: | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Switch to the Scilab Console Window and type: | ||
− | '''s | + | '''s = poly(0, ’s’)''' |
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us switch to the '''Scilab Console''' Window. | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us switch to the '''Scilab Console''' Window. | ||
Line 68: | Line 66: | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Display the output polynomial | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Display the output polynomial | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The output is '''s'''. | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The output is ''''s''''. |
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| On the console window type: | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| On the console window type: | ||
− | s | + | s = %s |
and press '''Enter'''. | and press '''Enter'''. | ||
Line 97: | Line 92: | ||
− | Use '''csim''' with '''step''' option to obtain the '''step response''' and then '''plot the step response. ''' | + | Use '''csim''' with '''step''' option, to obtain the '''step response''' and then '''plot the step response. ''' |
|- | |- | ||
Line 111: | Line 106: | ||
− | ''' | + | Here '''c''' is used as we are defining a continuous time system. |
− | ''' | + | Press '''Enter'''. |
|- | |- | ||
Line 137: | Line 132: | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Then type | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Then type | ||
− | y1 | + | y1 = csim(’step’, t, sysG); |
Press Enter. | Press Enter. | ||
Line 178: | Line 173: | ||
Press Enter. | Press Enter. | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us switch to the '''Scilab Console''' | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us switch to the '''Scilab Console''' window. |
Line 195: | Line 190: | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| '''Then type''' | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| '''Then type''' | ||
− | '''y two is equal to | + | '''y two is equal to c sim open paranthesis u two comma t comma sys capital G close the bracket semicolon''' |
− | ''' | + | Press '''Enter.''' |
Line 212: | Line 207: | ||
− | Make sure that you place a ''' | + | Make sure that you place a '''semicolon''' between '''u2''' and '''y2''' because '''u2''' and '''y2''' are row vectors of the same size. |
Line 227: | Line 222: | ||
* the output is also a '''sine wave''', and | * the output is also a '''sine wave''', and | ||
− | * there is a '''phase lag between the input and output | + | * there is a '''phase lag''' between the input and output |
− | * '''amplitude''' is different for the input and the output as it is being passed through a transfer function. | + | * '''amplitude''' is different for the input and the output, as it is being passed through a '''transfer''' function. |
− | * This is a typical '''under-damped''' example | + | * This is a typical '''under-damped''' example. |
− | + | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 11''' | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 11''' | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us plot '''bode plot''' of 2 over 9 plus 2 s plus s square | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us plot '''bode plot''' of '''2 over 9 plus 2 s plus s square''' |
Line 241: | Line 235: | ||
Do not use '''f r e q''' as a '''variable''' !! | Do not use '''f r e q''' as a '''variable''' !! | ||
− | |||
Line 251: | Line 244: | ||
Press Enter. | Press Enter. | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Open the '''Scilab | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Open the '''Scilab console''' and type |
Line 274: | Line 267: | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 12''' | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 12''' | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us define another system | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us define another system. |
We have an '''over-damped system p equal to s square plus nine s plus nine''' | We have an '''over-damped system p equal to s square plus nine s plus nine''' | ||
− | Let us plot '''step response''' for this system | + | Let us plot '''step response''' for this system. |
|- | |- | ||
Line 288: | Line 281: | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to Scilab console | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to Scilab console | ||
− | Type this on your '''Scilab | + | Type this on your '''Scilab console''' |
Line 312: | Line 305: | ||
'''t equal to zero colon zero point one colon ten semi colon''' | '''t equal to zero colon zero point one colon ten semi colon''' | ||
− | ''' | + | Press '''Enter.''' |
Line 318: | Line 311: | ||
− | ''' | + | Press '''Enter.''' |
Line 324: | Line 317: | ||
− | ''' | + | Press '''Enter.''' |
+ | |||
+ | |||
− | The '''response plot for over damped system | + | The '''response plot''' for over damped system is shown. |
|- | |- | ||
Line 339: | Line 334: | ||
− | These '''roots are the poles''' of the system '''sys two''' | + | These '''roots''' are the '''poles''' of the system '''sys two''' |
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Display the output''' | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Display the output''' | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The '''roots or poles''' of the system are shown | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The '''roots or poles''' of the system are shown. |
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 13, 14''' | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Slide 13, 14''' | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Please plot '''Step response''' for this system | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Please plot '''Step response''' for this system along similar lines, as for '''over damped system'''. |
− | + | ||
− | + | ||
− | along similar lines as for '''over damped system'''. | + | |
Line 376: | Line 368: | ||
− | --> '''g | + | --> '''g = (s+6)/(sˆ2+6*s+19)''' and press '''Enter''' |
Then type this on your '''Scilab Console''' | Then type this on your '''Scilab Console''' | ||
Line 382: | Line 374: | ||
--> '''sys4 <nowiki>=</nowiki> syslin(’c’,g)''' and press '''Enter''' | --> '''sys4 <nowiki>=</nowiki> syslin(’c’,g)''' and press '''Enter''' | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to Scilab console. | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to '''Scilab console'''. |
− | For a general '''transfer function, the numerator and denominator | + | For a general '''transfer function''', the numerator and denominator can be specified separately. Let me show you how. |
Line 402: | Line 394: | ||
− | ''' | + | Press '''Enter.''' |
Line 411: | Line 403: | ||
− | Press ''' | + | Press '''Enter.''' |
+ | |||
Line 426: | Line 419: | ||
− | Its | + | Its numerator and denominator can be extracted by various ways. |
− | '''Sys of two , numer of sys '''or '''numer of g '''gives the | + | '''Sys of two , numer of sys '''or '''numer of g '''gives the numerator. |
− | The | + | The denominator can be calculated using '''sys(3)''' or '''denom of sys functions'''. |
Line 462: | Line 455: | ||
− | Press | + | Press '''Enter.''' |
− | This gives the | + | This gives the numerator of the rational function ’'''sys three'''’ that is '''6 + s''' |
− | Otherwise you can type | + | Otherwise, you can type |
'''numer open paranthesis sys three close paranthesis''' | '''numer open paranthesis sys three close paranthesis''' | ||
− | The | + | The numerator of '''sys three''' is shown. |
− | To get the | + | |
+ | To get the denominator, type | ||
'''sys three open paranthesis three close paranthesis. Press enter''' | '''sys three open paranthesis three close paranthesis. Press enter''' | ||
− | The | + | The denominator of the function is shown. |
− | You can also type '''denom open paranthesis sys three close paranthesis. | + | You can also type '''denom open paranthesis sys three close paranthesis.''' |
+ | Press '''Enter.''' | ||
− | Then type '''p l z r open paranthesis sys three close paranthesis. Press | + | |
+ | Then type '''p l z r open paranthesis sys three close paranthesis.''' | ||
+ | |||
+ | Press '''Enter.''' | ||
|- | |- | ||
Line 490: | Line 488: | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The '''output graph''' plots the '''poles and zeros'''. | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The '''output graph''' plots the '''poles and zeros'''. | ||
− | It shows '''cross and circle for poles and zeros''' of the system respectively | + | It shows '''cross''' and '''circle'''' for '''poles''' and '''zeros''' of the system respectively. |
It is plotted on the '''complex plane'''. | It is plotted on the '''complex plane'''. | ||
Line 518: | Line 516: | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| * Watch the video available at the following link | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| * Watch the video available at the following link | ||
* It summarises the Spoken Tutorial project | * It summarises the Spoken Tutorial project | ||
− | * If you do not have good bandwidth, you can download and watch it | + | * If you do not have good bandwidth, you can download and watch it |
− | + | ||
− | + | ||
Revision as of 11:28, 28 December 2013
Title of script: Advanced Control Systems
Author: Manas, Shamika
Keywords: control, continuous time, response
|
|
---|---|
Slide 1 | Dear friends, welcome to the spoken tutorial on “Advanced Control of Continuous Time systems” |
Slide 2,3-Learning Objective Slide | At the end of this tutorial, you will learn how to:
1.Define a continuous time system: second and higher order 2.Plot response to step and sine inputs 3.Do a Bode plot 4.Study numer and denom Scilab functions 5. Plot poles and zeros of a system
|
Slide 4-System Requirement slide | To record this tutorial, I am using
|
Slide 5- Prerequisite slide | Before practising this tutorial, a learner should have basic knowledge of Scilab and control systems.
|
Slide 6 | In this tutorial, I will describe how to define second-order linear system.
|
Switch to the Scilab Console Window and type:
s = poly(0, ’s’) |
Let us switch to the Scilab Console Window.
Here type:
|
Display the output polynomial | The output is 's'. |
On the console window type:
s = %s and press Enter. |
There is another way to define 's' as continuous time complex variable
On the Console window type: s equal to percentage s and press Enter. |
Slide 7 | Let us study the syslin Scilab command
Use the Scilab function ’syslin’ to define the continuous time system
|
Switch to the Scilab Console Window and type:
sysG = syslin(’c’,2/(sˆ2+2*s+9)) |
Let us switch to the Scilab Console Window.
Here type:
|
Display the output generated | The output is linear second order system represented by
2 over 9 plus 2 s plus s square |
Type:
t=0:0.1:10; Press Enter. |
Then type
t equal to zero colon zero point one colon ten semi colon Press Enter. |
Then type
y1 = csim(’step’, t, sysG); Press Enter. |
Then type
|
Then type
plot(t, y1); Press Enter. |
Then type
plot open paranthesis t comma y one close paranthesis semicolon
|
Display the output generated | The output will display the step response of the given second order system. |
Slide 8 | Let us study the Second Order system response for sine input.
Sine inputs can easily be given as inputs to a second order system to a continuous time system. |
Switch to the Scilab Console Window and type this on your Scilab Console
Press Enter. |
Let us switch to the Scilab Console window.
U two is equal to sine open paranthesis t close paranthesis semi colon
|
Type y2 = csim(u2, t, sysG);
|
Then type
y two is equal to c sim open paranthesis u two comma t comma sys capital G close the bracket semicolon
|
Type plot(t, [u2; y2])
Press Enter. |
Then type
plot open paranthesis t comma open square bracket u two semicolon y two close square bracket close paranthesis
|
Slide 9, 10 | Response Plot plots both the input and the output on the same graph.
As expected,
|
Slide 11 | Let us plot bode plot of 2 over 9 plus 2 s plus s square
Do not use f r e q as a variable !!
|
Switch to the Scilab console and type
fr = [0.01:0.1:10]; // Hertz Press Enter. |
Open the Scilab console and type
Press Enter.
|
Type bode(sysG, fr) and press Enter. | Then type
bode open paranthesis sys capital G comma fr close paranthesis and press Enter.
|
Slide 12 | Let us define another system.
We have an over-damped system p equal to s square plus nine s plus nine Let us plot step response for this system. |
Switch to the Scilab console and type
p=s^2 +9*s+9 Press Enter. |
Switch to Scilab console
Type this on your Scilab console
|
Type sys2 = syslin('c', 9/p)
Press Enter. |
Then type this on your Scilab Console
sys two is equal to syslin open paranthesis open single quote c close single quote comma nine divided by p close paranthesis
t equal to zero colon zero point one colon ten semi colon Press Enter.
The response plot for over damped system is shown. |
roots(p)
and press Enter. |
To find the roots of p type this on your on Scilab console.
Roots of p and press Enter.
|
Display the output | The roots or poles of the system are shown. |
Slide 13, 14 | Please plot Step response for this system along similar lines, as for over damped system.
|
Switch to the Scilab Console Window and type this on your Scilab Console
Type this on your Console
Then type this on your Scilab Console
|
Switch to Scilab console.
Press Enter
Both ways, we get the same output six plus s over 19 plus six s plus s square
|
Slide 15,16 | The variable ’sys’ is of type ’rational’.
|
Slide 17 | The poles and zeros of the system can be plotted using p l z r function.
The syntax is p l z r of sys The plot shows x for poles and circles for zeros. |
Switch to Scilab and type this on your Scilab Console
Type numer(sys3) |
Switch to Scilab console.
sys three open paranthesis two close paranthesis
This gives the numerator of the rational function ’sys three’ that is 6 + s
numer open paranthesis sys three close paranthesis The numerator of sys three is shown.
To get the denominator, type sys three open paranthesis three close paranthesis. Press enter
You can also type denom open paranthesis sys three close paranthesis. Press Enter.
Press Enter. |
Display output | The output graph plots the poles and zeros.
It shows cross and circle' for poles and zeros of the system respectively. It is plotted on the complex plane. |
Slide 18 | In this tutorial we have learnt how to:
|
Show Slide 19
Title: About the Spoken Tutorial Project
|
* Watch the video available at the following link
|
Show Slide 20
Title: Spoken Tutorial Workshops The Spoken Tutorial Project Team
|
The Spoken Tutorial Project Team
|
Show Slide
Title: Acknowledgement 21
|
* Spoken Tutorial Project is a part of the Talk to a Teacher project
|
On previous slide | This is Ashwini Patil signing off. Thank you for joining. |