Difference between revisions of "CircuitJS/C3/Transistor-Characteristics/English"

From Script | Spoken-Tutorial
Jump to: navigation, search
(Created page with "{| border="1" |- || '''Visual Cue''' || '''Narration''' |- | style="color:#000000;" | slide:1 | style="color:#000000;" | Welcome to the spoken tutorial on '''Transistor Charac...")
 
 
Line 4: Line 4:
 
|| '''Narration'''
 
|| '''Narration'''
 
|-
 
|-
| style="color:#000000;" | slide:1
+
|| '''Slide 1''':
| style="color:#000000;" | Welcome to the spoken tutorial on '''Transistor Characteristics''' using '''CircuitJS''' simulator
+
|| Welcome to the spoken tutorial on '''Transistor Characteristics''' using '''CircuitJS''' simulator.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
|| <div style="color:#000000;">Slide 2:</div>
+
|| '''Slide 2''':
  
<div style="color:#000000;">Learning Objective</div>
+
'''Learning Objectives'''
 
|| In this tutorial, we will learn about
 
|| In this tutorial, we will learn about
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''Transistor'''</div>
+
* '''Transistor'''
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Types of '''Transistors'''</div>
+
* Types of '''Transistors'''
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Transistor Voltage-Current (V-I) characteristics</div>
+
* Transistor Voltage-Current (V-I) characteristics
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Transistor as a Switch</div>
+
* Transistor as a Switch
  
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
|| <div style="color:#000000;">Slide 4:</div>
+
|| '''Slide 3''':
  
<div style="color:#000000;">System Requirement</div>
+
'''System Requirement'''
 
|| To record this tutorial, I am using:
 
|| To record this tutorial, I am using:
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Ubuntu Linux 20.04 OS</div>
+
* Ubuntu Linux 20.04 OS
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''CircuitJS''' Application</div>
+
* '''CircuitJS''' Application
  
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
|| <div style="color:#000000;">Slide 3:</div>
+
|| '''Slide 4''':
  
<div style="color:#000000;">Prerequisite</div>
+
'''Prerequisites'''
  
 
|| To follow this tutorial, you should have a basic knowledge of,
 
|| To follow this tutorial, you should have a basic knowledge of,
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Electrical circuits</div>
+
* Electrical circuits
  
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
|| <div style="color:#000000;">Slide 5:</div>
+
|| '''Slide 5''':
  
<div style="color:#000000;">What is a Transistor?</div>
+
'''What is a Transistor'''?
 
||
 
||
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">A '''transistor''' is a semiconductor device that amplifies or switches electronic signals.</div>
+
* A '''transistor''' is a semiconductor device that amplifies or switches electronic signals.
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">The '''transistor''' forms a fundamental component in modern electronic devices.</div>
+
* The '''transistor''' forms a fundamental component in modern electronic devices.
  
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
|| <div style="color:#000000;">Slide 6:</div>
+
|| '''Slide 6''':
  
<div style="color:#000000;">Types of Transistors</div>
+
'''Types of Transistors'''
|| <div style="color:#000000;">There are two type of transistor</div>
+
|| There are two type of transistors
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''Bipolar Junction Transistor (BJT)'''</div>
+
* '''Bipolar Junction Transistor (BJT)'''
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''Field Effect Transistor (FET)'''</div>
+
* '''Field Effect Transistor (FET)'''
  
<div style="color:#000000;"></div>
 
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
 
||
 
<div style="color:#000000;">Slide 6:</div>
 
  
<div style="color:#000000;">'''Bipolar Junction Transistor (BJT)'''</div>
+
|-
 +
|| '''Slide 7''':
  
|| <div style="color:#000000;">In this tutorial we will discuss '''Bipolar Junction Transistor (BJT).'''</div>
+
'''Bipolar Junction Transistor (BJT)'''
  
<div style="color:#000000;">A '''BJT''' has three terminals: base, collector, and emitter.</div>
+
|| In this tutorial we will discuss about '''Bipolar Junction Transistor (BJT).'''
  
<div style="color:#000000;">There are two types of '''Bipolar Junction Transistors'''</div>
+
A '''BJT''' has three terminals: base, collector, and emitter.
# <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">PNP Transistor and </div>
+
  
# <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">NPN Transistor</div>
+
There are two types of '''Bipolar Junction Transistors'''
 +
# PNP Transistor and
  
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
# NPN Transistor
|| <div style="color:#000000;"></div>
+
  
<div style="color:#000000;"></div># <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''PNP Transistor.png'''</div>
+
|-
 +
|| # '''PNP Transistor.png'''
  
<div style="color:#000000;"></div># <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''NPN Transistor.png'''</div>
+
# '''NPN Transistor.png'''
  
<div style="color:#000000;"></div>
+
|| Let us see how these 3 terminal semiconductors are formed.
|| <div style="color:#000000;">Let us see how these 3 terminal semiconductors are formed.</div>
+
  
<div style="color:#000000;">A PNP transistor is formed using two diodes.</div>
+
A PNP transistor is formed using two diodes.
  
<div style="color:#000000;">An N-type semiconductor is placed between two P-type semiconductors.</div>
+
An N-type semiconductor is placed between two P-type semiconductors.
  
<div style="color:#000000;"></div>
 
  
<div style="color:#000000;">An NPN transistor is formed using two diodes.</div>
+
An NPN transistor is formed using two diodes.
  
<div style="color:#000000;">A P-type semiconductor is placed between two N-type semiconductors.</div>
+
A P-type semiconductor is placed between two N-type semiconductors.
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
|| # <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''NPN and PNP BJT.png'''</div>
+
|| # '''NPN and PNP BJT.png'''
  
|| <div style="color:#000000;">The NPN and PNP transistors are denoted by this symbol.</div>
+
|| The NPN and PNP transistors are denoted by these symbols.
  
<div style="color:#000000;">The arrow represents the current flow in the transistor. </div>
+
The arrow represents the current flow in the transistor.  
  
<div style="color:#000000;">Current always flows from P to N.</div>
+
Current always flows from P to N.
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
|-  
|| # <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''NPN_Circuit_Diagram.png'''</div>
+
|| # '''NPN_Circuit_Diagram.png'''
 
+
|| We will create this circuit to demonstrate the working of '''NPN transistor. '''
| style="color:#000000;" | We will create this circuit to demonstrate the working of the '''NPN transistor. '''
+
|-  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|| Show the diagram
|| <div style="color:#000000;"></div>
+
 
+
<div style="color:#000000;">Show the diagram</div>
+
<div style="color:#000000;"></div>
+
 
+
<div style="color:#000000;"></div>
+
 
|| To do this experiment, we will need
 
|| To do this experiment, we will need
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">1 NPN transistor</div>
+
* 1 NPN transistor
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">1 Variable voltage of 0 to 5 volts</div>
+
* 1 Variable voltage of 0 to 5 volts
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">1 Variable voltage of 0 to 20 volts </div>
+
* 1 Variable voltage of 0 to 20 volts  
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">1 Resistor of 100 Ohms</div>
+
* 1 Resistor of 100 Ohms
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">2 Ammeters</div>
+
* 2 Ammeters
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">1 LED and</div>
+
* 1 LED and
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">1 Ground component</div>
+
* 1 Ground component
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
|| <div style="color:#000000;">'''Water tap analogy'''</div>
+
|| '''Water tap analogy'''
  
# <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">'''Overlay_Circuit_Analogy.png'''</div>
+
# '''Overlay_Circuit_Analogy.png'''
  
<div style="color:#000000;"></div>
+
|| Let’s take the example of a water tap to understand the working of an NPN transistor.
  
<div style="color:#000000;"></div>
+
Let’s assume, tap knob as base, water inlet as collector and outlet of the tap as emitter.
|| <div style="color:#000000;">  </div>
+
  
<div style="color:#000000;">Let’s take the example of a water tap to understand the working of an NPN transistor.</div>
+
The knob of the tap controls the amount of water coming out of the outlet.
  
<div style="color:#000000;">Let’s assume, tap knob as base, water inlet as collector and outlet of the tap as emitter.</div>
+
The base terminal voltage controls the intensity of light emitted by the LED.
  
<div style="color:#000000;">The knob of the tap controls the amount of water coming out of the outlet.</div>
+
When the knob is closed, no water flows through the outlet.  
  
<div style="color:#000000;">The base terminal voltage controls the intensity of light emitted by the LED.</div>
+
Likewise when voltage is not applied at the base terminal, LED will not glow and vice versa.
 +
|-
 +
||
 +
|| Using the same analogy, the working of the NPN transistor is explained below.
  
<div style="color:#000000;">When the knob is closed, no water flows through the outlet. </div>
+
Let us see the working of NPN transistor in '''circuitjs''' interface.
  
<div style="color:#000000;">Likewise when voltage is not applied at the base terminal, LED will not glow and vice versa.</div>
+
|-  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|| Open the '''circuitjs''' interface.
| style="color:#000000;" |  
+
|| <div style="color:#000000;">Using the same analogy, the working of the NPN transistor is explained below.</div>
+
  
<div style="color:#000000;">Let us see the working of NPN transistors in '''circuitjs''' interface.</div>
+
Show the terminal
 +
|| Open the '''circuitjs''' interface.
  
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
Click on '''File''' and select '''New Blank Circuit'''.
|| <div style="color:#000000;">Open the '''circuitjs''' interface.</div>
+
|-  
 +
|| '''Add NPN Transistor'''
 +
|| Click on '''Draw''', go to '''Active Components''' and select '''Add Transistor (Bipolar, NPN)'''.
  
<div style="color:#000000;">Show the terminal</div>
+
Drag and draw the '''NPN transistor ''' in the working area.
|| <div style="color:#000000;">Open the '''circuitjs''' interface.</div>
+
|-
 +
|| '''Add Resistor'''
 +
|| Click on '''Draw''' and select '''Add resistor'''.
  
<div style="color:#000000;">Click on '''File''' and select '''New Blank Circuit.'''</div>
+
Drag and draw the resistor in the working area.
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
| style="color:#000000;" | '''Add NPN Transistor'''
+
|| <div style="color:#000000;">Click on '''Draw''', go to '''Active Components''' and select '''Add Transistor (Bipolar, NPN)'''.</div>
+
  
<div style="color:#000000;">Drag and draw the '''NPN transistor '''in the working area.</div>
+
Use the '''Edit''' option to change the resistor value to 100 Ohms.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
| style="color:#000000;" | '''Add Resistor'''
+
|| <div style="color:#000000;">Click on '''Draw''' and select '''Add resistor'''.</div>
+
  
<div style="color:#000000;">Drag and draw the resistor in the working area.</div>
+
Connect this resistor to the emitter terminal of the '''NPN transistor.'''
 +
|-
 +
|| '''Connect ground'''
 +
|| Click on '''Draw''', go to '''Inputs and Sources''' and select '''Add Ground''' component.
  
<div style="color:#000000;">Use the '''Edit''' option to change the resistor value to 100 Ohms.</div>
+
Drag and draw the ground component in the working area.
  
<div style="color:#000000;">Connect this resistor to the emitter terminal of the '''NPN transistor.'''</div>
+
Connect the ground component to the resistor as shown.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
| style="color:#000000;" | '''Connect ground'''
+
|| '''Add LED'''
|| <div style="color:#000000;">Click on '''Draw''', go to '''Inputs and Sources''' and select '''Add Ground''' component.</div>
+
|| Click on '''Draw''', go to '''Outputs and Labels''', and select '''Add LED'''.
  
<div style="color:#000000;">Drag and draw the ground component in the working area.</div>
+
Drag and draw the LED in the working area.
  
<div style="color:#000000;">Connect the ground component to the resistor as shown.</div>
+
Connect the LED to the collector terminal of the '''NPN transistor.'''
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
| style="color:#000000;" | '''Add LED'''
+
|| '''Add Ammeter'''
|| <div style="color:#000000;">Click on '''Draw''', go to '''Outputs and Labels''', and select '''Add LED'''.</div>
+
|| Click on '''Draw''', go to '''Outputs and Labels''', and select '''Add Ammeter'''.
  
<div style="color:#000000;">Drag and draw the LED in the working area.</div>
+
Drag and draw the ammeter in the working area.
  
<div style="color:#000000;">Connect the LED to the collector terminal of the '''NPN transistor.'''</div>
+
Use the '''Duplicate''' option to get one more  ammeter.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
| style="color:#000000;" | '''Add Ammeter'''
+
|| <div style="color:#000000;">Click on '''Draw''', go to '''Outputs and Labels''', and select '''Add Ammeter'''.</div>
+
  
<div style="color:#000000;">Drag and draw the ammeter in the working area.</div>
+
Connect one ammeter to the base terminal of the '''NPN transistor'''.
  
<div style="color:#000000;">Use the '''Duplicate''' option to get ammeters.</div>
+
Connect the other ammeter to the LED.
  
<div style="color:#000000;">Connect one ammeter to the base terminal of the '''NPN transistor.'''</div>
+
Use the '''Swap Terminals''' option to change the orientation of the ammeter.
 +
|-
 +
|| '''Add Variable voltage'''
 +
|| Click on '''Draw''', go to '''Inputs and Sources''' and select''' Add Variable Voltage''' component.
  
<div style="color:#000000;">Connect the other ammeter to the LED.</div>
+
Drag and draw the variable voltage in the working area.
  
<div style="color:#000000;">Use the '''Swap Terminals''' option to change the orientation of the ammeter.</div>
+
Use the '''Duplicate''' option to get two variable voltage supplies.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
| style="color:#000000;" | '''Add Variable voltage'''
+
|| <div style="color:#000000;">Click on '''Draw''', go to '''Inputs and Sources''' and select''' Add Variable Voltage''' component.</div>
+
  
<div style="color:#000000;">Drag and draw the variable voltage in the working area.</div>
+
The default voltage range of the variable power supply is 0 to 5 volts.
  
<div style="color:#000000;">Use the '''Duplicate''' option to get two variable voltage supplies.</div>
+
Connect one variable power supply to the ammeter connected to the '''base terminal'''.
  
<div style="color:#000000;">The default voltage range of the variable power supply is 0 to 5 volts.</div>
+
Then connect the other variable voltage supply to the Ammeter as shown.
  
<div style="color:#000000;">Connect one variable power supply to the ammeter connected to the '''base terminal.'''</div>
+
Use the '''Edit''' option to change the voltage range of the variable power supply.
  
<div style="color:#000000;">Then connect the other variable voltage supply to the Ammeter as shown.</div>
+
Change the voltage range to minimum 0 volts and maximum 20 volts and save the changes.
 +
|-
 +
|| Use Add Text option
 +
|| Use the '''Add Text''' option to give labels to the LED, resistor and variable power supply as shown.
 +
|-
 +
|| CircuitJS explanation
 +
|| Let us see the '''V-I characteristics''' of the NPN transistor connected in this circuit.
  
<div style="color:#000000;">Use the '''Edit''' option to change the voltage range of the variable power supply.</div>
+
Right click on the NPN transistor and select '''View in New Scope''' option.
  
<div style="color:#000000;">Change the voltage range to minimum 0 volts and maximum 20 volts and save the changes.</div>
+
A graph will appear at the bottom of your screen.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
| style="color:#000000;" | Use Add Text option
+
| style="color:#000000;" | Use the '''Add Text''' option to give labels to the LED, resistor and variable power supply as shown.
+
|- style="border:1pt solid #000000;padding:0.176cm;"
+
| style="color:#000000;" | CircuitJS explanation
+
|| <div style="color:#000000;">Let us see the '''V-I characteristics''' of the NPN transistor connected in this circuit.</div>
+
  
<div style="color:#000000;">Right click on the NPN transistor and select '''View in New Scope''' option.</div>
+
We can see a settings icon at the bottom left corner of the screen.
  
<div style="color:#000000;">A graph will appear at the bottom of your screen.</div>
+
Click on the '''settings icon'''.
  
<div style="color:#000000;">We can see a settings icon at the bottom left corner of the screen.</div>
+
A pop-up window will open.
  
<div style="color:#000000;">Click on the '''settings icon'''.</div>
+
Here, first we have to select the '''X-Y plots''' option .
  
<div style="color:#000000;">A pop-up window will open.</div>
+
Then check the checkbox '''Show Vce vs Ic'''.
  
<div style="color:#000000;">Here, first we have to select the '''X-Y plots''' option .</div>
+
Click on the '''OK''' button to save the changes.
  
<div style="color:#000000;">Then check the checkbox '''Show Vce vs Ic'''.</div>
+
Increase the size of the graph as shown.
 +
|-
 +
|| '''While explaining point out'''
 +
|| There are two voltage sliders on the right side of your screen.
  
<div style="color:#000000;">Click on the '''OK''' button to save the changes.</div>
+
The first voltage slider is for the voltage supply V1.
  
<div style="color:#000000;">Increase the size of the graph window as shown.</div>
+
The second voltage slider is for the voltage supply V2.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
|| <div style="color:#000000;">'''While explaining point out'''</div>
+
|| '''Perform on circuitjs'''
 +
|| Let us first make both the voltage supply values to 0 volts using the respective sliders.
  
|| <div style="color:#000000;">There are two voltage sliders on the right side of your screen.</div>
+
Click on the '''Reset''' button.
 +
|-
 +
||
 +
|| To show the V-I characteristics of the Transistor, we will keep the base current value constant.
  
<div style="color:#000000;">The first voltage slider is for the voltage supply V1.</div>
+
Change the value of V1 to 1 volt using the slider.
  
<div style="color:#000000;">The second voltage slider is for the voltage supply V2.</div>
+
Now, gradually increase the value of V2 using the other slider.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
| style="color:#000000;" | '''Perform on circuitjs'''
+
|| <div style="color:#000000;">Let us first make both the voltage supply values to 0 volts using the respective sliders.</div>
+
  
<div style="color:#000000;">Click on the Reset button.</div>
+
Notice the V-I characteristics of the graph.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|| <div style="color:#000000;"></div>
+
  
<div style="color:#000000;"></div>
+
The X-axis represents the voltage through the collector-emitter junction that is Vce.
|| <div style="color:#000000;">To show the V-I characteristics of the Transistor, we will keep the base current value constant.</div>
+
  
<div style="color:#000000;">Change the value of V1 to 1 volt using the slider.</div>
+
And the Y-axis represents the current flowing through the collector that is Ic.
  
<div style="color:#000000;">Now, gradually increase the value of V2 using the other slider.</div>
+
|-
 +
|| Drag the slider V2
 +
|| Let us perform the same exercise for different values of variable voltage V1.
  
<div style="color:#000000;">Notice the V-I characteristics of the graph.</div>
+
First, reset the V2 power supply voltage to 0 volts using the slider.
  
<div style="color:#000000;">The X-axis represents the voltage through the collector-emitter junction that is Vce.</div>
+
Now, increase the V1 power supply to 2 volts using the slider.
  
<div style="color:#000000;">And the Y-axis represents the current flowing through the collector that is Ic.</div>
+
Now, gradually increase the voltage supply V2 and observe the V-I characteristics.
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
You will see that after some point, the LED starts to glow.
|| <div style="color:#000000;"></div>
+
  
<div style="color:#000000;"></div>
+
In this case, you will see the current '''I''' is greater than the previous reading.
|| <div style="color:#000000;">Let us perform the same exercise for different values of variable voltage V1.</div>
+
  
<div style="color:#000000;">First, reset the V2 power supply voltage to 0 volts using the slider.</div>
+
Note the current and voltage values of I and V shown in the box.
 +
|-
 +
|| V-I Char_3Volt.png
 +
|| Repeat the same process for variable voltage V1 of 3 volts.
  
<div style="color:#000000;">Now, increase the V1 power supply to 2 volts using the slider.</div>
+
Use a voltage slider to give precise value to the power supply.
 +
|-
 +
||
 +
|| The brightness of the LED depends on the power supply V1.
  
<div style="color:#000000;">Now, gradually increase the voltage supply V2 and observe the V-I characteristics.</div>
+
If the power supply V1 at the base terminal is zero, the LED will not glow in the circuit.
  
<div style="color:#000000;">You will see that after some point, the LED starts to glow.</div>
+
Note that the base voltage controls the current flowing through the transistor.
  
<div style="color:#000000;">In this case, you will see the current '''I''' is greater than the previous reading.</div>
+
This is similar to the analogy of the water tap.
  
<div style="color:#000000;">Note the current and voltage values of I and V shown in the box.</div>
+
This shows that an NPN transistor can also be used as a switch.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|-  
|| <div style="color:#000000;">V-I Char_3Volt.png</div>
+
|| '''Slide 8''':
  
<div style="color:#000000;"></div>
+
'''Importance of NPN over PNP'''
|| <div style="color:#000000;">Repeat the same process for variable voltage V1 of 3 volts.</div>
+
  
<div style="color:#000000;">Use a voltage slider to give precise value to the power supply.</div>
+
|| Let us see why NPN transistors are preferred over PNP transistors.
|- style="border:1pt solid #000000;padding:0.176cm;"
+
| style="color:#000000;" |
+
|| <div style="color:#000000;">The brightness of the LED depends on the power supply V1.</div>
+
  
<div style="color:#000000;">If the power supply V1 at the base terminal is zero, the LED will not glow in this circuit.</div>
+
* Electrons exhibit high mobility in semiconductor materials.
 +
* An NPN transistor consists of electrons as majority charge carriers.
 +
* The silicon based transistors are economically carried out using large N-type silicon wafers.
  
<div style="color:#000000;">Note that the base voltage controls the current flowing through the transistor.</div>
+
|-
 +
||
 +
|| This brings us to the end of the tutorial. Let us summarize.
 +
|-
 +
|| '''Slide 9''':
  
<div style="color:#000000;">This is similar to the analogy of the water tap.</div>
+
'''Summary'''
 +
|| In this tutorial, we learnt about
 +
* Transistor
 +
* Types of Transistors
 +
* Transistor Voltage-Current (V-I) characteristics.
 +
* Transistor as a Switch
  
<div style="color:#000000;">This shows that an NPN transistor can also be used as a switch.</div>
+
|-  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|| '''Slide 10''':
|| <div style="color:#000000;">Slide:</div>
+
  
<div style="color:#000000;">Importance of NPN over PNP</div>
+
'''Assignment'''
 +
|| As an assignment,
 +
* Follow the same steps to plot a graph of '''V vs I ''' for values V1 = 4 volts and V1 = 5 volts.
  
<div style="color:#000000;"></div>
+
|-
|| <div style="color:#000000;">Let us see why NPN transistors are preferred over PNP transistors.</div>
+
|| '''Slide 11''':
  
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Electrons exhibit high mobility in semiconductor materials.</div>
+
'''About Spoken Tutorial project'''
 +
|| The video at the following link summarizes the Spoken Tutorial project.
  
<div style="color:#000000;"></div>
+
Please download and watch it.
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">An NPN transistor consists of electrons as majority charge carriers.</div>
+
|-  
 +
|| '''Slide 12''':
  
<div style="color:#000000;"></div>
+
'''Spoken Tutorial workshops'''
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">The silicon based transistors are economically carried out using large N-type silicon wafers.</div>
+
|| The&nbsp;Spoken Tutorial Project&nbsp;Team conducts workshops and gives certificates.
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
For more details, please write to us.
| style="color:#000000;" |
+
|-  
| style="color:#000000;" | This brings us to the end of the tutorial. Let us summarize.
+
|| '''Slide 13''':  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
|| <div style="color:#000000;">Slide:</div>
+
  
<div style="color:#000000;">Summary </div>
+
'''Forum for specific questions'''
|| In this tutorial, we learnt about
+
|| Please post your timed queries in this forum.
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Transistor</div>
+
|-  
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Types of Transistors</div>
+
|| '''Slide 14''':
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Transistor Voltage-Current (V-I) characteristics.</div>
+
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Transistor as a Switch</div>
+
  
|- style="border:1pt solid #000000;padding:0.176cm;"
+
'''Acknowledgement'''
|| <div style="color:#000000;">Slide:</div>
+
|| Spoken Tutorial project was established by the Ministry of Education(MoE), Govt of India
 +
|-  
 +
||'''Slide 15''':  
  
<div style="color:#000000;">Assignment</div>
 
|| As an assignment,
 
* <div style="color:#000000;margin-left:1.27cm;margin-right:0cm;">Follow the same steps to plot a graph of '''V vs I '''for values V1 = 4 volts and V1 = 5 volts.</div>
 
  
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
'''Thank You'''
|| <div style="color:#000000;">Slide :</div>
+
|| This tutorial has been contributed by FOSSEE and Spoken Tutorial Project, IIT Bombay.
  
<div style="color:#000000;">About Spoken Tutorial project</div>
+
Thank you for joining.
|| <div style="color:#000000;">The video at the following link summarizes the Spoken Tutorial project.</div>
+
 
+
<div style="color:#000000;">Please download and watch it.</div>
+
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
| style="color:#000000;" | Slide&nbsp;:Spoken Tutorial workshops
+
|| <div style="color:#000000;">The&nbsp;Spoken Tutorial Project&nbsp;Team conducts workshops and gives certificates.</div>
+
 
+
<div style="color:#000000;">For more details, please write to us.</div>
+
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
| style="color:#000000;" | Slide : Forum for specific questions
+
| style="color:#000000;" | Please post your timed queries in this forum.
+
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
| style="color:#000000;" | Acknowledgement
+
| style="color:#000000;" | Spoken Tutorial project was established by the Ministry of Education(MoE), Govt of India
+
|- style="border:1pt solid #000000;padding-top:0cm;padding-bottom:0cm;padding-left:0.206cm;padding-right:0.191cm;"
+
| style="color:#000000;" | Thank you
+
|| <div style="color:#000000;">This tutorial has been contributed by FOSSEE and Spoken Tutorial Project, IIT Bombay.</div>
+
 
+
<div style="color:#000000;">Thanks for watching.</div>
+
 
|-
 
|-
 
|}
 
|}
<div style="color:#000000;"></div>
 
 
<div style="color:#000000;"></div>
 

Latest revision as of 13:05, 16 May 2024

Visual Cue Narration
Slide 1: Welcome to the spoken tutorial on Transistor Characteristics using CircuitJS simulator.
Slide 2:

Learning Objectives

In this tutorial, we will learn about
  • Transistor
  • Types of Transistors
  • Transistor Voltage-Current (V-I) characteristics
  • Transistor as a Switch
Slide 3:

System Requirement

To record this tutorial, I am using:
  • Ubuntu Linux 20.04 OS
  • CircuitJS Application
Slide 4:

Prerequisites

To follow this tutorial, you should have a basic knowledge of,
  • Electrical circuits
Slide 5:

What is a Transistor?

  • A transistor is a semiconductor device that amplifies or switches electronic signals.
  • The transistor forms a fundamental component in modern electronic devices.
Slide 6:

Types of Transistors

There are two type of transistors
  • Bipolar Junction Transistor (BJT)
  • Field Effect Transistor (FET)


Slide 7:

Bipolar Junction Transistor (BJT)

In this tutorial we will discuss about Bipolar Junction Transistor (BJT).

A BJT has three terminals: base, collector, and emitter.

There are two types of Bipolar Junction Transistors

  1. PNP Transistor and
  1. NPN Transistor
# PNP Transistor.png
  1. NPN Transistor.png
Let us see how these 3 terminal semiconductors are formed.

A PNP transistor is formed using two diodes.

An N-type semiconductor is placed between two P-type semiconductors.


An NPN transistor is formed using two diodes.

A P-type semiconductor is placed between two N-type semiconductors.

# NPN and PNP BJT.png The NPN and PNP transistors are denoted by these symbols.

The arrow represents the current flow in the transistor.

Current always flows from P to N.

# NPN_Circuit_Diagram.png We will create this circuit to demonstrate the working of NPN transistor.
Show the diagram To do this experiment, we will need
  • 1 NPN transistor
  • 1 Variable voltage of 0 to 5 volts
  • 1 Variable voltage of 0 to 20 volts
  • 1 Resistor of 100 Ohms
  • 2 Ammeters
  • 1 LED and
  • 1 Ground component
Water tap analogy
  1. Overlay_Circuit_Analogy.png
Let’s take the example of a water tap to understand the working of an NPN transistor.

Let’s assume, tap knob as base, water inlet as collector and outlet of the tap as emitter.

The knob of the tap controls the amount of water coming out of the outlet.

The base terminal voltage controls the intensity of light emitted by the LED.

When the knob is closed, no water flows through the outlet.

Likewise when voltage is not applied at the base terminal, LED will not glow and vice versa.

Using the same analogy, the working of the NPN transistor is explained below.

Let us see the working of NPN transistor in circuitjs interface.

Open the circuitjs interface.

Show the terminal

Open the circuitjs interface.

Click on File and select New Blank Circuit.

Add NPN Transistor Click on Draw, go to Active Components and select Add Transistor (Bipolar, NPN).

Drag and draw the NPN transistor in the working area.

Add Resistor Click on Draw and select Add resistor.

Drag and draw the resistor in the working area.

Use the Edit option to change the resistor value to 100 Ohms.

Connect this resistor to the emitter terminal of the NPN transistor.

Connect ground Click on Draw, go to Inputs and Sources and select Add Ground component.

Drag and draw the ground component in the working area.

Connect the ground component to the resistor as shown.

Add LED Click on Draw, go to Outputs and Labels, and select Add LED.

Drag and draw the LED in the working area.

Connect the LED to the collector terminal of the NPN transistor.

Add Ammeter Click on Draw, go to Outputs and Labels, and select Add Ammeter.

Drag and draw the ammeter in the working area.

Use the Duplicate option to get one more ammeter.

Connect one ammeter to the base terminal of the NPN transistor.

Connect the other ammeter to the LED.

Use the Swap Terminals option to change the orientation of the ammeter.

Add Variable voltage Click on Draw, go to Inputs and Sources and select Add Variable Voltage component.

Drag and draw the variable voltage in the working area.

Use the Duplicate option to get two variable voltage supplies.

The default voltage range of the variable power supply is 0 to 5 volts.

Connect one variable power supply to the ammeter connected to the base terminal.

Then connect the other variable voltage supply to the Ammeter as shown.

Use the Edit option to change the voltage range of the variable power supply.

Change the voltage range to minimum 0 volts and maximum 20 volts and save the changes.

Use Add Text option Use the Add Text option to give labels to the LED, resistor and variable power supply as shown.
CircuitJS explanation Let us see the V-I characteristics of the NPN transistor connected in this circuit.

Right click on the NPN transistor and select View in New Scope option.

A graph will appear at the bottom of your screen.

We can see a settings icon at the bottom left corner of the screen.

Click on the settings icon.

A pop-up window will open.

Here, first we have to select the X-Y plots option .

Then check the checkbox Show Vce vs Ic.

Click on the OK button to save the changes.

Increase the size of the graph as shown.

While explaining point out There are two voltage sliders on the right side of your screen.

The first voltage slider is for the voltage supply V1.

The second voltage slider is for the voltage supply V2.

Perform on circuitjs Let us first make both the voltage supply values to 0 volts using the respective sliders.

Click on the Reset button.

To show the V-I characteristics of the Transistor, we will keep the base current value constant.

Change the value of V1 to 1 volt using the slider.

Now, gradually increase the value of V2 using the other slider.

Notice the V-I characteristics of the graph.

The X-axis represents the voltage through the collector-emitter junction that is Vce.

And the Y-axis represents the current flowing through the collector that is Ic.

Drag the slider V2 Let us perform the same exercise for different values of variable voltage V1.

First, reset the V2 power supply voltage to 0 volts using the slider.

Now, increase the V1 power supply to 2 volts using the slider.

Now, gradually increase the voltage supply V2 and observe the V-I characteristics.

You will see that after some point, the LED starts to glow.

In this case, you will see the current I is greater than the previous reading.

Note the current and voltage values of I and V shown in the box.

V-I Char_3Volt.png Repeat the same process for variable voltage V1 of 3 volts.

Use a voltage slider to give precise value to the power supply.

The brightness of the LED depends on the power supply V1.

If the power supply V1 at the base terminal is zero, the LED will not glow in the circuit.

Note that the base voltage controls the current flowing through the transistor.

This is similar to the analogy of the water tap.

This shows that an NPN transistor can also be used as a switch.

Slide 8:

Importance of NPN over PNP

Let us see why NPN transistors are preferred over PNP transistors.
  • Electrons exhibit high mobility in semiconductor materials.
  • An NPN transistor consists of electrons as majority charge carriers.
  • The silicon based transistors are economically carried out using large N-type silicon wafers.
This brings us to the end of the tutorial. Let us summarize.
Slide 9:

Summary

In this tutorial, we learnt about
  • Transistor
  • Types of Transistors
  • Transistor Voltage-Current (V-I) characteristics.
  • Transistor as a Switch
Slide 10:

Assignment

As an assignment,
  • Follow the same steps to plot a graph of V vs I for values V1 = 4 volts and V1 = 5 volts.
Slide 11:

About Spoken Tutorial project

The video at the following link summarizes the Spoken Tutorial project.

Please download and watch it.

Slide 12:

Spoken Tutorial workshops

The Spoken Tutorial Project Team conducts workshops and gives certificates.

For more details, please write to us.

Slide 13:

Forum for specific questions

Please post your timed queries in this forum.
Slide 14:

Acknowledgement

Spoken Tutorial project was established by the Ministry of Education(MoE), Govt of India
Slide 15:


Thank You

This tutorial has been contributed by FOSSEE and Spoken Tutorial Project, IIT Bombay.

Thank you for joining.

Contributors and Content Editors

Madhurig, Nirmala Venkat