Difference between revisions of "Scilab/C4/Solving-Non-linear-Equations/English"
(Created page with ''''Title of script''': '''Solving Nonlinear Equations using Numerical Methods''' '''Author: Shamika''' '''Keywords: Nonlinear equation, root, zero''' {| style="border-spacing…') |
|||
Line 25: | Line 25: | ||
* Solve '''nonlinear equations''' using numerical methods | * Solve '''nonlinear equations''' using numerical methods | ||
* The methods we will be studying are | * The methods we will be studying are | ||
− | * Bisection method | + | * '''Bisection method''' |
− | * and Secant method | + | * and '''Secant method''' |
* We will also develop '''Scilab''' code to solve '''nonlinear equations ''' | * We will also develop '''Scilab''' code to solve '''nonlinear equations ''' | ||
Line 63: | Line 63: | ||
− | * In '''bisection method,''' we calculate the initial bracket of the '''root'''. | + | * In '''bisection method,''' we calculate the '''initial bracket''' of the '''root'''. |
− | * Then we iterate through the bracket and halve its length. | + | * Then we iterate through the '''bracket''' and halve its length. |
* We repeat this proces until we find the solution of the equation. | * We repeat this proces until we find the solution of the equation. | ||
Line 80: | Line 80: | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Open '''Bisection.sci''' on Scilab Editor | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Open '''Bisection.sci''' on Scilab Editor | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| * Open Bisection dot sci on Scilab editor | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| * Open '''Bisection dot sci '''on '''Scilab editor''' |
− | * Let us look at the code for Bisection method | + | * Let us look at the code for '''Bisection method''' |
− | * We define the function Bisection with input arguments a b f and tol | + | * We define the function '''Bisection''' with input arguments '''a b f '''and '''tol''' |
− | * Here a is the lower limit of the interval | + | * Here '''a''' is the lower limit of the interval |
− | * b is the upper limit of the interval | + | * '''b '''is the upper limit of the interval |
− | * f is the function to be solved | + | * '''f''' is the function to be solved |
− | * and tol is | + | * and '''tol''' is the''' tolerance level''' |
* We specify the maximum number of iterations to be equal to hundred. | * We specify the maximum number of iterations to be equal to hundred. | ||
− | * We find the midpoint of the interval and iterate till the value calculated is within the specified '''tolerance range'''. | + | * We find the '''midpoint of the interval '''and iterate till the value calculated is within the specified '''tolerance range'''. |
Line 97: | Line 97: | ||
− | Save and execute the file | + | '''Save and execute '''the file |
|- | |- | ||
Line 126: | Line 126: | ||
Press enter | Press enter | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to Scilab console | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to '''Scilab console''' |
Line 132: | Line 132: | ||
− | Let a be equal to minus five | + | Let '''a '''be equal to minus five |
Press enter | Press enter | ||
− | Let b be equal to minus three. | + | Let '''b''' be equal to minus three. |
Press enter | Press enter | ||
Line 154: | Line 154: | ||
− | Let '''tol '''be equal to | + | Let '''tol '''be equal to 10 to the power of minus five |
'''Press enter''' | '''Press enter''' | ||
Line 171: | Line 171: | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 12 | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 12 | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us study Secant's method. | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us study '''Secant's method'''. |
In '''Secan't method, '''the derivative is approximated by finite | In '''Secan't method, '''the derivative is approximated by finite | ||
− | difference using two successive | + | difference using two successive '''iteration values.''' |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
Line 189: | Line 185: | ||
− | The two starting guesses are , '''p zero '''equal to two and '''p one '''equal to three. | + | The two '''starting guesses''' are , '''p zero '''equal to two and '''p one '''equal to three. |
|- | |- | ||
Line 196: | Line 192: | ||
− | Open Secant dot sci on Scilab editor | + | Open '''Secant dot sci '''on '''Scilab editor''' |
− | We define the function secant with input arguments a, b and f | + | We define the function '''secant '''with input arguments '''a, b '''and '''f''' |
− | a is first starting guess for the root | + | '''a''' is first starting guess for the root |
− | b is the second starting guess and f is the function to be solved. | + | '''b''' is the second starting guess and f is the function to be solved. |
Line 218: | Line 214: | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Click on Execute and select Save and Execute | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Click on Execute and select Save and Execute | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let me save and execute the code. | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let me '''save and execute '''the code. |
|- | |- | ||
Line 249: | Line 245: | ||
Press enter | Press enter | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to Scilab console | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to '''Scilab console''' |
− | Type clc | + | Type '''clc''' |
− | Press enter | + | Press '''enter''' |
Line 261: | Line 257: | ||
'''a '''equal to 2 | '''a '''equal to 2 | ||
− | Press enter | + | Press '''enter''' |
Line 268: | Line 264: | ||
'''b '''equal to 3 | '''b '''equal to 3 | ||
− | Press enter | + | Press '''enter''' |
Line 287: | Line 283: | ||
− | The value of the root is shown on the console | + | The value of the root is shown on the '''console''' |
Revision as of 17:20, 12 February 2014
Title of script: Solving Nonlinear Equations using Numerical Methods
Author: Shamika
Keywords: Nonlinear equation, root, zero
|
|
---|---|
Slide 1 | Dear Friends,
Welcome to the spoken tutorial on “Solving Nonlinear Equations using Numerical Methods” |
Slide 2,3 -Objectives | At the end of this tutorial, you will learn how to:
|
Slide 4-System Requirements | To record this tutorial, I am using
|
Slide 5- Prerequisites | Before practising this tutorial, a learner should have
For Scilab, please refer to the Scilab tutorials available on the Spoken Tutorial website. |
Slide 6 | For a given function f , we have to find the value of x for which f of x is equal to zero.
This solution x is called root of equation or zero of function f This process is called root finding or zero finding |
Slide 7 | We begin by studying Bisection Method.
|
Slide 8 | Let us solve this function using Bisection method
function f equal to two sin x minus e to the power of x divided by four minus one in the interval minus five and minus three. |
Open Bisection.sci on Scilab Editor | * Open Bisection dot sci on Scilab editor
|
Click on Execute and select Save and Execute | Let us solve the problem using this code.
|
Switch to Scilab console
a=-5 Press enter b=-3 Press enter
Press enter
Press enter Bisection(a,b,f,Tol) Press enter |
Switch to Scilab console
Press enter
Press enter
We type deff open paranthesis open single quote open square bracket y close square bracket equal to f of x close single quote comma open single quote y equal to two asterisk sin of x minus open paranthesis open paranthesis percentage e to the power of x close paranthesis divided by four close paranthesis minus one close single quote close paranthesis
Press enter
Press enter
Press enter
|
Slide 12 | Let us study Secant's method.
difference using two successive iteration values. |
Slide 13 | Let us solve this example using Secant method
The function is f equal to x square minus six.
|
Open Secant.sci on Scilab Editor | Before we solve the problem, let us look at the code for Secant meethod.
|
Click on Execute and select Save and Execute | Let me save and execute the code. |
Switch to Scilab console
Type on Scilab console
Press enter
Press enter
Press enter
Press enter
Press enter |
Switch to Scilab console
Press enter
a equal to 2 Press enter
b equal to 3 Press enter
Type deff open paranthesis open single quote open square bracket y close square bracket equal to g of x close single quote comma open single quote y equal to open paranthesis x to the power of two close paranthesis minus six close single quote close paranthesis Press enter
Secant open paranthesis a comma b comma g close paranthesis. Press enter
|
Slide 14 | Let us summarize this tutorial
In this tutorial we have learnt to:
|
Slide 15- Assignment | Solve this problem on your own using the two methods we learnt today. |
Show Slide 16
Title: About the Spoken Tutorial Project
|
* Watch the video available at the following link
|
Show Slide 17
Title: Spoken Tutorial Workshops The Spoken Tutorial Project Team
|
The Spoken Tutorial Project Team
|
Show Slide 18
Title: Acknowledgement
|
* Spoken Tutorial Project is a part of the Talk to a Teacher project
|
On previous slide | This is Ashwini Patil signing off. Thanks for joining. |