Difference between revisions of "PhET-Simulations-for-Chemistry/C3/Sugar-and-Salt-solutions/English"
Line 51: | Line 51: | ||
|- | |- | ||
− | ||'''Slide Number | + | ||'''Slide Number 5''' |
'''Pre-requisites''' | '''Pre-requisites''' | ||
Line 63: | Line 63: | ||
|- | |- | ||
− | ||'''Slide Number | + | ||'''Slide Number 6''' |
'''Link for PhET simulation''' | '''Link for PhET simulation''' | ||
Line 113: | Line 113: | ||
− | The markings show 0 Litre, 1 Litre and 2 Litres. | + | The markings show 0 '''Litre''', 1 '''Litre''' and 2 '''Litres'''. |
|- | |- | ||
|| Show salt shaker. | || Show salt shaker. | ||
Line 122: | Line 122: | ||
|- | |- | ||
|| Cursor on the right panel. | || Cursor on the right panel. | ||
− | || On the right, we see '''Solute''', '''Concentration '''and''' Conductivity '''panels. | + | || On the right, we see '''Solute''', '''Concentration ''' and ''' Conductivity '''panels. |
|- | |- | ||
|| Cursor on the right panel. | || Cursor on the right panel. | ||
Line 168: | Line 168: | ||
|- | |- | ||
|| Click the '''Reset All '''button. | || Click the '''Reset All '''button. | ||
− | || '''Reset All '''button resets the simulation to default parameters. | + | || '''Reset All ''' button resets the simulation to default parameters. |
|- | |- | ||
Line 186: | Line 186: | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 7''' |
− | ''' | + | '''Concentration and Molarity''' |
Line 197: | Line 197: | ||
Molarity is one way of expressing concentration. | Molarity is one way of expressing concentration. | ||
+ | |- | ||
− | + | ||'''Slide Number 8''' | |
− | Molarity (M) | + | |
+ | |||
+ | '''Molarity''' | ||
+ | || Molarity is equal to Number of moles of the solute by Volume of solution in litres(L) | ||
+ | |||
+ | Molarity(M) is equal to n by V(n/V). | ||
Line 208: | Line 214: | ||
Shake the dispenser to add salt | Shake the dispenser to add salt | ||
− | || On adding salt, concentration increases as seen in the | + | || On adding salt, concentration increases as seen in the '''Concentration''' panel. |
Line 219: | Line 225: | ||
Let's tabulate the values to calculate the amount of solute. | Let's tabulate the values to calculate the amount of solute. | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 9''' |
'''Table 1''' | '''Table 1''' | ||
Line 315: | Line 321: | ||
|- | |- | ||
|| Cursor on the water container. | || Cursor on the water container. | ||
− | || | + | || Now let us observe the concentration of sugar in water. |
Line 337: | Line 343: | ||
Let's tabulate the results. | Let's tabulate the results. | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 10''' |
'''Table 2''' | '''Table 2''' | ||
Line 367: | Line 373: | ||
|- | |- | ||
|| Click on the micro tab to open. | || Click on the micro tab to open. | ||
− | || To observe this phenomenon in detail click the '''Micro '''tab to open it. | + | || To observe this phenomenon in detail click the '''Micro ''' tab to open it. |
|- | |- | ||
Line 374: | Line 380: | ||
|- | |- | ||
|| Cursor on right panel. | || Cursor on right panel. | ||
− | || On the right, you will see '''Solute '''and '''Concentration ''' panels. | + | || On the right, you will see '''Solute ''' and '''Concentration ''' panels. |
Line 568: | Line 574: | ||
− | The sticks in the model | + | The sticks in the model represents covalent bonds between adjacent atoms. |
|- | |- | ||
|| Click on the X button to close. | || Click on the X button to close. | ||
Line 626: | Line 632: | ||
This resists its dissociation in water, so no ions are formed. | This resists its dissociation in water, so no ions are formed. | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 11''' |
'''Summary''' | '''Summary''' | ||
Line 641: | Line 647: | ||
* addition of a solvent | * addition of a solvent | ||
* evaporation | * evaporation | ||
+ | |- | ||
+ | ||'''Slide Number 12''' | ||
+ | '''Summary''' | ||
− | Conductivity of a solution. | + | ||Conductivity of a solution. |
Identify whether the given compound is ionic or covalent. | Identify whether the given compound is ionic or covalent. | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 13''' |
'''Assignment''' | '''Assignment''' | ||
Line 659: | Line 668: | ||
Interpret the possible dissociated ions and predict their conductivity. | Interpret the possible dissociated ions and predict their conductivity. | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 14''' |
Line 668: | Line 677: | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 15''' |
Line 677: | Line 686: | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 16''' |
Line 698: | Line 707: | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 17''' |
Line 709: | Line 718: | ||
|- | |- | ||
− | || '''Slide Number | + | || '''Slide Number 18''' |
Line 715: | Line 724: | ||
|| Spoken Tutorial project is funded by the Ministry of Education (MoE), Govt. of India | || Spoken Tutorial project is funded by the Ministry of Education (MoE), Govt. of India | ||
|- | |- | ||
− | || | + | ||'''Slide Number 19''' |
+ | |||
+ | '''Thank you''' | ||
||This is Vidhi Thakur, a FOSSEE | ||This is Vidhi Thakur, a FOSSEE | ||
*summer fellow 2022, IIT Bombay | *summer fellow 2022, IIT Bombay |
Revision as of 15:08, 9 January 2023
Sugar and Salt Solutions
Author: Vidhi Thakur
Keywords: PhET simulation, Sugar, Salts, solute, molarity, concentration, evaporation, Conductivity, water partial charges, space fill format and Ball and stick format, spoken tutorial, video tutorial.
Visual Cue | Narration |
Slide Number 1
Title Slide |
Welcome to this tutorial on Sugar and Salt solutions. |
Slide Number 2
Learning Objectives
|
In this tutorial, we will learn about,
Change in concentration of the solution on:
|
Slide Number 3
Learning Objectives |
Conductivity of a solution
Identify whether the given compound is ionic or covalent. |
Slide Number 4
System Requirement |
Here I am using
Java version 1.8.
|
Slide Number 5
Pre-requisites https://spoken-tutorial.org |
To follow this tutorial, learner should be familiar with topics in high school science.
|
Slide Number 6
Link for PhET simulation point to
|
Please use the given link to download the PhET simulation.
|
Point to the file in the Downloads folder. | I have downloaded Sugar and Salt Solutions simulation, to my Downloads folder. |
Double click the file to open | To open the simulation double click on the file. |
Cursor on the interface. | This is the interface of Sugar and Salt Solutions simulation |
Cursor on simulation interface.
|
The simulation interface has 3 tabs.
|
Cursor on Macro interface. | Macro tab opens first by default.
|
Show the location of inlet and outlet Faucets. | Inlet water faucet is placed at the top-left of the container.
|
Cursor on the container. | The container is graduated and filled with water.
|
Show salt shaker. | A salt shaker is placed at the top of the container.
Shake the salt dispenser to add salt to the container. |
Cursor on the right panel. | On the right, we see Solute, Concentration and Conductivity panels. |
Cursor on the right panel.
|
The Solute panel shows Salt and Sugar radio buttons.
From here we can select the solute type. Let us keep the default solute as salt.
|
Cursor on the right panel.
Click on the show values checkbox |
The Concentration panel shows the concentration as a bar graph.
|
Cursor to bottom panel
|
At the bottom we see Evaporation panel with a slider.
|
Cursor to the bottom of container. | There is a Remove salt button at the bottom of the container.
On clicking this button salt is removed from the solution. |
Click the Reset All button. | Reset All button resets the simulation to default parameters. |
Cursor on the water container.
Click on the show value check box. |
Let us observe the concentration of salt in water.
|
Shake the salt dispenser. | Shake the salt shaker to add salt to the container. |
Slide Number 7
|
Concentration is a measure of the amount of solute dissolved in a given solution.
|
Slide Number 8
Molarity |
Molarity is equal to Number of moles of the solute by Volume of solution in litres(L)
Molarity(M) is equal to n by V(n/V).
|
Cursor on concentration panel
|
On adding salt, concentration increases as seen in the Concentration panel.
|
Cursor on concentration panel | Let us add more salt and record the change in concentration.
|
Slide Number 9
Table 1 |
Here I have calculated the amount of solute for different concentrations.
|
Drag the slider on the inlet Faucet. | Let's add some water to the container till the 1.5 litres mark.
|
Cursor on the simulation. | A decrease in concentration is observed.
|
Cursor on Evaporation panel.
|
Now let us see the effect of evaporation on concentration.
|
Cursor to the green electrode
Cursor to red electrode
Cursor to bulb and battery |
Let us now check the Conductivity panel.
It consists of a circuit with a green negatively charged anode.
|
Cursor on the right panel.
|
Now let us observe the conductivity of the solution.
|
Shake the salt dispenser.
|
Let's add more salt to the container.
|
Point to the bulb. | Dissociated salts conduct electricity through ions.
Hence intensity of brightness increases. |
Click on Reset all button
|
Click on the Reset All button.
|
Cursor on the water container. | Now let us observe the concentration of sugar in water.
|
Shake the sugar dispenser. | Let's add sugar to the container.
|
Cursor on concentration panel
|
On adding sugar concentration increases as seen in the Concentration panel.
|
Slide Number 10
Table 2 |
Molecular weight of sugar is 342.3 g/mol
|
Cursor on right panel.
Drag the circuit inside the solution
|
Now let us observe the conductivity of the solution.
|
Point to the solution and bulb. | This is because sugar does not dissociate into ions.
Hence cannot conduct electricity. |
Click on the micro tab to open. | To observe this phenomenon in detail click the Micro tab to open it. |
Cursor on the interface. | In the Micro tab, molecular movement of ions can be observed in the solution. |
Cursor on right panel. | On the right, you will see Solute and Concentration panels.
|
Cursor on the water container.
|
I will keep Sodium chloride as the default solute.
|
Shake salt shaker in a container,
Cursor in right panel |
Let us add sodium chloride to the container using the salt shaker.
|
Cursor on the right panel.
Add Sucrose to the container.
|
Let's click on the Reset All button to reset the simulation to default parameters.
|
Point to the molecules in the container. | Sucrose will not dissociate, as it is a molecular solid with covalent bonding.
|
Click the arrow button to show the solutes. | Now slide the solute panel to explore more solutes.
|
Cursor on Periodic table button.
|
The Periodic table button is present in the right panel.
|
Click on the Water tab.
|
Now click on the Water tab.
|
Point to sugar and salt in molecular form. | Interface shows salt and sugar as solutes in molecular form. |
Cursor on the right panel.
Cursor on options and buttons.
Point to the sugar molecules in the Sugar bucket.
|
On the bottom right panel, you will see the Show panel.
|
Cursor on the button.
|
In the right panel, we can also see a Sugar in 3D button.
|
Click on the X button to close. | Let us close the window. |
Add salt and pause the simulation.
|
Now let's add salt to water and immediately pause the simulation.
|
Click on the Reset All.
|
Click on the Reset All button on the right panel.
|
Add sugar to water and pause the simulation.
|
Now add sugar to water and immediately pause the simulation.
|
Slide Number 11
Summary |
With this we have come to the end of this tutorial.
Let's summarise.
|
Slide Number 12
Summary |
Conductivity of a solution.
Identify whether the given compound is ionic or covalent. |
Slide Number 13
Assignment |
As an assignment,
|
Slide Number 14
|
The video at the following link summarizes the Spoken Tutorial project.
|
Slide Number 15
|
We conduct workshops using spoken tutorials and give certificates.
|
Slide Number 16
Do you have questions in THIS Spoken Tutorial? Please visit this site Choose the minute and second where you have the question. Explain your question briefly The spoken tutorial project will ensure answer. You will have to register on this website to ask questions. |
|
Slide Number 17
|
The Spoken Tutorial forum is for specific questions on this tutorial.
|
Slide Number 18
|
Spoken Tutorial project is funded by the Ministry of Education (MoE), Govt. of India |
Slide Number 19
Thank you |
This is Vidhi Thakur, a FOSSEE
Thank you for joining.
|