Difference between revisions of "R"
Sudhakarst (Talk | contribs) |
Sudhakarst (Talk | contribs) |
||
Line 61: | Line 61: | ||
==Module 3: Introduction to RStudio== | ==Module 3: Introduction to RStudio== | ||
+ | |||
+ | * Features of '''RStudio''' | ||
+ | |||
+ | * A look at the windows in '''RStudio''' interface: | ||
+ | |||
+ | * Source and Console windows | ||
+ | |||
+ | * Workspace window | ||
+ | |||
+ | * Plots and Files window | ||
+ | |||
+ | * Example to plot a simple data set | ||
+ | |||
+ | * Introduction to packages in R | ||
+ | |||
+ | * How to find the list of packages installed in R | ||
+ | |||
+ | * Installation of R packages in RStudio | ||
+ | |||
+ | * Loading and using R packages | ||
+ | |||
==Module 4: Introduction to R script== | ==Module 4: Introduction to R script== |
Revision as of 15:54, 18 April 2019
R ( http://www.r-project.org/) is an open source software - a well organized and sophisticated package - that facilitates data analysis, modeling, inferential testing and forecasting. It is a user friendly software which allows to create new function commands to solve statistical problems. It runs on a variety of UNIX platforms (and similar systems such as LINUX), Windows and Mac OS.
R is the most preferred open source language for analytics and data science. At Microsoft, R is used by its data scientists, who apply machine learning to data from Bing, Azure, Office, and the Sales, Marketing, and Finance departments. Twitter has been using R for measuring user-experience. On the other hand, the cross-platform compatibility of R and its capacity to handle large and complex data sets make it an ideal tool for academicians to analyze data in their labs.
R can be used for simple calculations, matrix calculations, differential equations, optimisation, statistical analysis, plotting graphs, etc. Also, it is useful to anybody who wishes to undertake extensive statistical computations and data visualization.
Contents
- 1 Module 1: Introduction to basics of R
- 2 Module 2: Introduction to data frames in R
- 3 Module 3: Introduction to RStudio
- 4 Module 4: Introduction to R script
- 5 Module 5: Working Directories in RStudio
- 6 Module 6: Indexing and Slicing Data Frames
- 7 Module 7: Creating Matrices using Data Frames
- 8 Module 8: Operations on Matrices and Data Frames
- 9 Module 9: Merging and Importing Data
- 10 Module 10: Data Types and Factors
Note: Each numbered topic corresponds to a single spoken tutorial. Each bulleted point corresponds to a command or topic that must be covered in the given spoken tutorial.
Module 1: Introduction to basics of R
- Version of R and RStudio used
- Operating systems on which these run
- Quick intro to R and RStudio
- Resizing the font and window size
- Using
+
,-
,^
,sqrt
- Using
exp
,log
,sin
- Different ways of invoking
log
- Vectors using
seq
andlength
- Using
pi
- Plotting a
sine
function
- Defining more points to get a smooth plot
- Plotting with points and as line
- Introduction to help
Module 2: Introduction to data frames in R
- Storing captaincy information in vectors
- Constructing a data frame using vectors
- Plotting one vector of a data frame vs. another one
- Adding a vector to a data frame
- Saving a data frame into a csv file
- Preventing the writing of row numbers into the csv file
- Changing the contents of a csv file through a text editor
- Loading a csv file into a data frame
- Accessing the data sets that come with R
Module 3: Introduction to RStudio
- Features of RStudio
- A look at the windows in RStudio interface:
* Source and Console windows
* Workspace window
* Plots and Files window
- Example to plot a simple data set
- Introduction to packages in R
- How to find the list of packages installed in R
- Installation of R packages in RStudio
- Loading and using R packages