Difference between revisions of "Scilab/C4/Solving-Non-linear-Equations/English"
(Created page with ''''Title of script''': '''Solving Nonlinear Equations using Numerical Methods''' '''Author: Shamika''' '''Keywords: Nonlinear equation, root, zero''' {| style="border-spacing…') |
Nancyvarkey (Talk | contribs) |
||
(One intermediate revision by one other user not shown) | |||
Line 6: | Line 6: | ||
− | {| | + | {|border=1 |
! <center>Visual Cue</center> | ! <center>Visual Cue</center> | ||
− | |||
− | |||
− | |||
! <center>Narration</center> | ! <center>Narration</center> | ||
Line 24: | Line 21: | ||
* Solve '''nonlinear equations''' using numerical methods | * Solve '''nonlinear equations''' using numerical methods | ||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | The methods we will be studying are | ||
+ | * '''Bisection method''' and | ||
+ | * '''Secant method''' | ||
+ | We will also develop '''Scilab''' code to solve '''nonlinear equations'''. | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 4-System Requirements | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 4-System Requirements | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| To record this tutorial, I am using | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| To record this tutorial, I am using | ||
− | + | * '''Ubuntu 12.04''' as the operating system and | |
− | * '''Ubuntu 12.04''' as the operating system | + | * '''Scilab 5.3.3''' version |
− | * | + | |
− | + | ||
− | + | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 5- Prerequisites | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 5- Prerequisites | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Before practising this tutorial, a learner should have | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Before practising this tutorial, a learner should have | ||
− | |||
* basic knowledge of '''Scilab '''and | * basic knowledge of '''Scilab '''and | ||
* '''nonlinear equations''' | * '''nonlinear equations''' | ||
− | For Scilab, please refer to the '''Scilab''' tutorials available on the '''Spoken Tutorial '''website. | + | For '''Scilab''', please refer to the '''Scilab''' tutorials available on the '''Spoken Tutorial '''website. |
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 6 | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 6 | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| For a given '''function f''' , we have to find the value of''' x''' for which '''f of x is equal to zero. | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| For a given '''function f''', we have to find the value of''' x''' for which '''f of x''' is equal to zero. |
− | This solution x is called '''root of equation or zero of function f''' | + | This solution '''x''' is called '''root of equation''' or '''zero of function f'''. |
− | This process is called '''root finding or zero finding''' | + | This process is called '''root finding''' or '''zero finding'''. |
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 7 | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 7 | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We begin by studying '''Bisection Method'''. | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We begin by studying '''Bisection Method'''. | ||
− | + | * In '''bisection method,''' we calculate the '''initial bracket''' of the '''root'''. | |
− | + | * Then we iterate through the '''bracket''' and halve its length. | |
− | * In '''bisection method,''' we calculate the initial bracket of the '''root'''. | + | * We repeat this process until we find the solution of the equation. |
− | * Then we iterate through the bracket and halve its length. | + | |
− | * We repeat this | + | |
− | + | ||
− | + | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 8 | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 8 | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us solve this function using '''Bisection method''' | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us solve this function using '''Bisection method'''. |
− | + | ||
Given | Given | ||
− | '''function f equal to two sin x minus e to the power of x divided by four minus one in the interval minus five and minus three | + | '''function f equal to two sin x minus e to the power of x divided by four minus one in the interval minus five and minus three''' |
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Open '''Bisection.sci''' on Scilab Editor | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Open '''Bisection.sci''' on Scilab Editor | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| |
− | + | Open '''Bisection dot sci '''on '''Scilab editor'''. | |
− | + | ||
− | + | Let us look at the code for '''Bisection method'''. | |
− | * b is the upper limit of the interval | + | |
− | * f is the function to be solved | + | We define the function '''Bisection''' with input arguments '''a b f '''and '''tol'''. |
− | * and tol is | + | |
− | + | |- | |
− | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight as per narration | |
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| | ||
+ | Here | ||
+ | * '''a''' is the lower limit of the '''interval''' | ||
+ | * '''b '''is the upper limit of the '''interval''' | ||
+ | * '''f''' is the function to be solved | ||
+ | * and '''tol''' is the''' tolerance level''' | ||
+ | |||
+ | |||
+ | We specify the maximum number of iterations to be equal to hundred. | ||
+ | We find the '''midpoint of the interval '''and iterate till the value calculated is within the specified '''tolerance range'''. | ||
|- | |- | ||
Line 97: | Line 94: | ||
− | Save and execute the file | + | Save and execute the file. |
|- | |- | ||
Line 103: | Line 100: | ||
− | On Scilab Console type, | + | On Scilab Console, type, |
a=-5 | a=-5 | ||
Line 112: | Line 109: | ||
Press enter | Press enter | ||
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to '''Scilab console''' | ||
− | + | Let us define the '''interval'''. | |
− | |||
+ | Let '''a '''be equal to minus five. | ||
− | + | Press '''Enter'''. | |
− | |||
− | + | Let '''b''' be equal to minus three. | |
− | Press | + | Press '''Enter'''. |
− | + | ||
− | + | |- | |
− | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| | |
− | + | <nowiki>deff('[y]=f(x)','y=(2*(sin(x))-((%e^x)/4)-1')</nowiki> | |
− | + | ||
− | + | ||
Press enter | Press enter | ||
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Define the function using '''deff function'''. | ||
+ | We type | ||
− | + | '''deff open paranthesis open single quote open square bracket y close square bracket equal to f of x close single quote comma open single quote y equal to two asterisk sin of x minus open paranthesis open paranthesis percentage e to the power of x close paranthesis divided by four close paranthesis minus one close single quote close paranthesis''' | |
− | Press | + | |- |
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| | ||
+ | Press '''Enter'''. | ||
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| To know more about '''deff function''', type '''help deff''' | ||
+ | Press '''Enter'''. | ||
− | + | |- | |
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| | ||
− | + | Tol=10^-5 | |
− | + | Press enter | |
+ | Bisection(a,b,f,Tol) | ||
− | + | Press enter | |
− | ''' | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let '''tol '''be equal to 10 to the power of minus five. |
− | + | Press '''Enter'''. | |
− | + | ||
− | + | ||
− | + | ||
To solve the problem, type | To solve the problem, type | ||
− | |||
'''Bisection open paranthesis a comma b comma f comma tol close paranthesis''' | '''Bisection open paranthesis a comma b comma f comma tol close paranthesis''' | ||
− | ''' | + | Press '''Enter'''. |
− | + | |- | |
− | The root of the function is | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| |
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The root of the function is shown on the console. | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 12 | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 12 | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us study | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us study '''Secant's method'''. |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | |||
− | + | In '''Secant's method, '''the derivative is approximated by finite difference using two successive '''iteration values.''' | |
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 13 | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 13 | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us solve this example using '''Secant method''' | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us solve this example using '''Secant method'''. |
The function is '''f equal to x square minus six'''. | The function is '''f equal to x square minus six'''. | ||
− | The two starting guesses are , '''p zero '''equal to two and '''p one '''equal to three. | + | The two '''starting guesses''' are , '''p zero '''equal to two and '''p one '''equal to three. |
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Open Secant.sci on Scilab Editor | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Open Secant.sci on Scilab Editor | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Before we solve the problem, let us look at the code for '''Secant | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Before we solve the problem, let us look at the code for '''Secant method. ''' |
− | Open Secant dot sci on Scilab editor | + | Open '''Secant dot sci '''on '''Scilab editor'''. |
+ | |- | ||
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"|Highlight as per narration | ||
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We define the function '''secant '''with input arguments '''a, b '''and '''f'''. | ||
− | + | *'''a''' is first starting guess for the root | |
+ | *'''b''' is the second starting guess and | ||
+ | *'''f''' is the function to be solved. | ||
− | + | |- | |
− | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"|Highlight as per narration | |
− | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We find the difference between the value at the current point and the previous point. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | We find the difference between the value at the current point and the previous point. | + | |
We apply '''Secant's method '''and find the value of the root. | We apply '''Secant's method '''and find the value of the root. | ||
− | + | |- | |
− | Finally we end the function | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"|Highlight as per narration |
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Finally we end the function. | ||
|- | |- | ||
Line 229: | Line 223: | ||
Press enter | Press enter | ||
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to '''Scilab console'''. | ||
− | + | Type '''clc'''. | |
− | Press | + | Press '''Enter'''. |
− | + | |- | |
− | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| a=2 | |
Press enter | Press enter | ||
− | + | b=3 | |
Press enter | Press enter | ||
− | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let me define the initial guesses for this example. Type | |
− | + | ||
− | + | ||
− | + | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | Let me define the initial guesses for this example. Type | + | |
'''a '''equal to 2 | '''a '''equal to 2 | ||
− | Press | + | Press '''Enter'''. |
Line 268: | Line 251: | ||
'''b '''equal to 3 | '''b '''equal to 3 | ||
− | Press | + | Press '''Enter'''. |
+ | |- | ||
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| <nowiki>deff('[y]=g(x)','y=(x^2)-6')</nowiki> | ||
− | We define the function using '''deff function. ''' | + | Press enter |
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We define the function using '''deff function. ''' | ||
Type | Type | ||
Line 277: | Line 263: | ||
'''deff open paranthesis open single quote open square bracket y close square bracket equal to g of x close single quote comma open single quote y equal to open paranthesis x to the power of two close paranthesis minus six close single quote close paranthesis''' | '''deff open paranthesis open single quote open square bracket y close square bracket equal to g of x close single quote comma open single quote y equal to open paranthesis x to the power of two close paranthesis minus six close single quote close paranthesis''' | ||
− | ''' | + | Press '''Enter'''. |
+ | |- | ||
+ | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Secant(a,b,g) | ||
+ | |||
+ | Press enter | ||
− | We call the function by typing | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We call the function by typing |
'''Secant open paranthesis a comma b comma g close paranthesis. ''' | '''Secant open paranthesis a comma b comma g close paranthesis. ''' | ||
− | ''' | + | Press '''Enter'''. |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | The value of the root is shown on the '''console''' | ||
|- | |- | ||
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 14 | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 14 | ||
− | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us summarize this tutorial | + | | style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us summarize this tutorial. |
In this tutorial we have learnt to: | In this tutorial we have learnt to: | ||
− | + | * Develop''' Scilab '''code for different solving methods | |
* Find the roots of '''nonlinear equation''' | * Find the roots of '''nonlinear equation''' | ||
− | |||
− | |||
− | |||
|- | |- | ||
Line 322: | Line 306: | ||
* It summarises the Spoken Tutorial project | * It summarises the Spoken Tutorial project | ||
* If you do not have good bandwidth, you can download and watch it <br/> | * If you do not have good bandwidth, you can download and watch it <br/> | ||
− | |||
− | |||
− | |||
|- | |- | ||
Line 332: | Line 313: | ||
The Spoken Tutorial Project Team | The Spoken Tutorial Project Team | ||
− | |||
* Conducts workshops using spoken tutorials | * Conducts workshops using spoken tutorials | ||
− | |||
* Gives certificates for those who pass an online test | * Gives certificates for those who pass an online test | ||
− | |||
* For more details, please write to contact@spoken-tutorial.org | * For more details, please write to contact@spoken-tutorial.org | ||
Line 343: | Line 321: | ||
* Conducts workshops using spoken tutorials | * Conducts workshops using spoken tutorials | ||
− | |||
* Gives certificates for those who pass an online test | * Gives certificates for those who pass an online test | ||
− | |||
* For more details, please write to contact at spoken hyphen tutorial dot org | * For more details, please write to contact at spoken hyphen tutorial dot org | ||
− | |||
− | |||
|- | |- | ||
Line 356: | Line 330: | ||
* Spoken Tutorial Project is a part of the Talk to a Teacher project | * Spoken Tutorial Project is a part of the Talk to a Teacher project | ||
− | |||
* It is supported by the National Mission on Education through ICT, MHRD, Government of India | * It is supported by the National Mission on Education through ICT, MHRD, Government of India | ||
− | |||
* More information on this Mission is available at | * More information on this Mission is available at | ||
− | |||
* [http://spoken-tutorial.org/NMEICT-Intro http://spoken-tutorial.org/NMEICT-Intro] | * [http://spoken-tutorial.org/NMEICT-Intro http://spoken-tutorial.org/NMEICT-Intro] | ||
Line 368: | Line 339: | ||
* More information on this Mission is available at | * More information on this Mission is available at | ||
* spoken hyphen tutorial dot org slash NMEICT hyphen Intro | * spoken hyphen tutorial dot org slash NMEICT hyphen Intro | ||
− | |||
− | |||
|- | |- |
Latest revision as of 18:45, 12 February 2014
Title of script: Solving Nonlinear Equations using Numerical Methods
Author: Shamika
Keywords: Nonlinear equation, root, zero
|
|
---|---|
Slide 1 | Dear Friends,
Welcome to the spoken tutorial on “Solving Nonlinear Equations using Numerical Methods” |
Slide 2,3 -Objectives | At the end of this tutorial, you will learn how to:
The methods we will be studying are
We will also develop Scilab code to solve nonlinear equations. |
Slide 4-System Requirements | To record this tutorial, I am using
|
Slide 5- Prerequisites | Before practising this tutorial, a learner should have
For Scilab, please refer to the Scilab tutorials available on the Spoken Tutorial website. |
Slide 6 | For a given function f, we have to find the value of x for which f of x is equal to zero.
This solution x is called root of equation or zero of function f. This process is called root finding or zero finding. |
Slide 7 | We begin by studying Bisection Method.
|
Slide 8 | Let us solve this function using Bisection method.
Given function f equal to two sin x minus e to the power of x divided by four minus one in the interval minus five and minus three |
Open Bisection.sci on Scilab Editor |
Open Bisection dot sci on Scilab editor. Let us look at the code for Bisection method. We define the function Bisection with input arguments a b f and tol. |
Highlight as per narration |
Here
|
Click on Execute and select Save and Execute | Let us solve the problem using this code.
|
Switch to Scilab console
a=-5 Press enter b=-3 Press enter |
Switch to Scilab console
Press Enter.
Press Enter. |
deff('[y]=f(x)','y=(2*(sin(x))-((%e^x)/4)-1') Press enter |
Define the function using deff function.
We type deff open paranthesis open single quote open square bracket y close square bracket equal to f of x close single quote comma open single quote y equal to two asterisk sin of x minus open paranthesis open paranthesis percentage e to the power of x close paranthesis divided by four close paranthesis minus one close single quote close paranthesis |
Press Enter. |
To know more about deff function, type help deff
Press Enter. |
Tol=10^-5 Press enter Bisection(a,b,f,Tol) Press enter |
Let tol be equal to 10 to the power of minus five.
Press Enter.
Bisection open paranthesis a comma b comma f comma tol close paranthesis Press Enter. |
The root of the function is shown on the console. | |
Slide 12 | Let us study Secant's method.
|
Slide 13 | Let us solve this example using Secant method.
The function is f equal to x square minus six.
|
Open Secant.sci on Scilab Editor | Before we solve the problem, let us look at the code for Secant method.
|
Highlight as per narration | We define the function secant with input arguments a, b and f.
|
Highlight as per narration | We find the difference between the value at the current point and the previous point.
|
Highlight as per narration | Finally we end the function. |
Click on Execute and select Save and Execute | Let me save and execute the code. |
Switch to Scilab console
Type on Scilab console
Press enter |
Switch to Scilab console.
Press Enter. |
a=2
Press enter
Press enter |
Let me define the initial guesses for this example. Type
a equal to 2 Press Enter.
b equal to 3 Press Enter. |
deff('[y]=g(x)','y=(x^2)-6')
Press enter |
We define the function using deff function.
Type deff open paranthesis open single quote open square bracket y close square bracket equal to g of x close single quote comma open single quote y equal to open paranthesis x to the power of two close paranthesis minus six close single quote close paranthesis Press Enter. |
Secant(a,b,g)
Press enter |
We call the function by typing
Secant open paranthesis a comma b comma g close paranthesis. Press Enter.
|
Slide 14 | Let us summarize this tutorial.
In this tutorial we have learnt to:
|
Slide 15- Assignment | Solve this problem on your own using the two methods we learnt today. |
Show Slide 16
Title: About the Spoken Tutorial Project
|
* Watch the video available at the following link
|
Show Slide 17
Title: Spoken Tutorial Workshops The Spoken Tutorial Project Team
|
The Spoken Tutorial Project Team
|
Show Slide 18
Title: Acknowledgement
|
* Spoken Tutorial Project is a part of the Talk to a Teacher project
|
On previous slide | This is Ashwini Patil signing off. Thanks for joining. |