Difference between revisions of "Scilab/C4/Interpolation/English"

From Script | Spoken-Tutorial
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
'''Author: Shamika'''
 
'''Author: Shamika'''
  
'''Keywords: Interpolation, Lagrange method, Newton divided difference method'''
+
'''Keywords: Interpolation, Lagrange method, Newton Divided Difference method'''
  
  
{|border=1
+
{| style="border-spacing:0;"
 
! <center>Visual Cue</center>
 
! <center>Visual Cue</center>
 
! <center>Narration</center>
 
! <center>Narration</center>
Line 21: Line 21:
  
 
* Develop '''Scilab code''' for different '''Numerical Interpolation algorithms'''
 
* Develop '''Scilab code''' for different '''Numerical Interpolation algorithms'''
* Calculate new value of '''function''' from given data points
+
* Calculate new value of '''function''' from given '''data points'''
  
 
|-
 
|-
Line 53: Line 53:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| In '''Lagrange interpolation''',  
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| In '''Lagrange interpolation''',  
 
*We pass a '''polynomial '''of''' degree N – 1''' through '''N''' points.  
 
*We pass a '''polynomial '''of''' degree N – 1''' through '''N''' points.  
*Then we find the unique '''N''' '''order polynomial y of x''' which '''interpolates''' the '''data''' samples.
+
*Then, we find the unique '''N''' '''order polynomial y of x'''  
 +
* which '''interpolates''' the '''data''' samples.
  
 
|-
 
|-
Line 60: Line 61:
  
  
We have to find the value of natural logarithm of nine point two.  
+
We have to find the value of '''natural logarithm''' of nine point two.  
  
  
Line 78: Line 79:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We define the function '''Lagrange''' with '''arguments x zero, x, f '''and''' n'''.  
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We define the function '''Lagrange''' with '''arguments x zero, x, f '''and''' n'''.  
  
'''X zero''' is the unknown '''interpolation point.'''
+
*'''X zero''' is the unknown '''interpolation point.'''
  
'''x''' is the '''vector '''containing the '''data points.'''
+
*'''x''' is the '''vector '''containing the '''data points.'''
  
'''f''' is the '''vector '''containing the values of the '''function '''at correspoding '''data points.'''
+
*'''f''' is the '''vector '''containing the values of the '''function '''at correspoding '''data points.'''
  
And '''n '''is the '''order '''of the '''interpolating polynomial'''.  
+
*And '''n '''is the '''order '''of the '''interpolating polynomial'''.  
  
 
|-
 
|-
Line 92: Line 93:
  
 
N = ones(1,m)<nowiki>;</nowiki>
 
N = ones(1,m)<nowiki>;</nowiki>
 
  
  
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We use '''n''' to initialize '''m''' and '''vector N.'''  
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We use '''n''' to initialize '''m''' and '''vector N.'''  
  
The order of the '''interpolating polynomail '''determines the number of '''nodes '''created.  
+
The order of the '''interpolating polynomial '''determines the number of '''nodes '''created.  
  
 
|-
 
|-
Line 118: Line 118:
  
  
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Then we apply '''Lagrange''' '''interpolation''' '''formula''' to find the value of the '''numerator''' and '''denominator.'''
+
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Then,
 +
*we apply '''Lagrange interpolation formula'''  
 +
*to find the value of the '''numerator''' and '''denominator.'''
  
 
|-
 
|-
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight
  
L(j) <nowiki>=</nowiki> N(j)/D(j)<nowiki>;</nowiki>
+
L(j) = N(j)/D(j);
  
  
y <nowiki>=</nowiki> y + L(j)<nowiki>*</nowiki>f(j)<nowiki>;</nowiki>
+
y = y + L(j)<nowiki>*</nowiki>f(j);
  
 
end
 
end
Line 139: Line 141:
  
  
We use '''L''' to find the value of the function '''y''' at the given data point. Finally we display the value of '''L''' and''' f of x.'''
+
We use '''L''' to find the value of the function '''y''' at the given data point.  
 +
 
 +
Finally we display the value of '''L''' and''' f of x.'''
  
 
|-
 
|-
Line 147: Line 151:
 
|-
 
|-
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Switch to Scilab console
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Switch to Scilab console
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to '''Scilab''' '''console''' to solve the example problem.
+
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to '''Scilab console''' to solve the example problem.
  
 
|-
 
|-
Line 155: Line 159:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us define the '''data points vector'''.
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us define the '''data points vector'''.
  
On the console type,  
+
On the '''console''' type,  
  
 
'''x equal to open square bracket nine point zero comma nine point five comma eleven point zero close square bracket.'''
 
'''x equal to open square bracket nine point zero comma nine point five comma eleven point zero close square bracket.'''
Line 201: Line 205:
  
  
Press '''Enter'''
+
Press '''Enter'''.
  
 
|-
 
|-
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Show console
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Show console
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The value of the function '''y''' at '''x''' '''equal to nine point two''' is displayed.  
+
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The value of the function '''y''' at '''x equal to nine point two''' is displayed.  
  
 
|-
 
|-
Line 213: Line 217:
 
|-
 
|-
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 8- Newton's Divided Difference Method
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 8- Newton's Divided Difference Method
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| In this method, '''divided differences recursive method '''is used.  
+
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| In this method, '''Divided Differences recursive method '''is used.  
  
  
Line 219: Line 223:
  
  
In spite of this, the same '''interpolating polynomial '''as in '''Lagrange method''' is generated.
+
In spite of this, the same '''interpolating polynomial, '''as in '''Lagrange method,''' is generated.
  
 
|-
 
|-
Line 226: Line 230:
  
  
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us solve this example using '''divided difference method'''.  
+
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us solve this example using '''Divided Difference method'''.  
  
  
We are given the '''data points''' and the corresponding values of the '''function''' at those '''data points'''.  
+
We are given  
 +
*the '''data points''' and  
 +
*the corresponding values of the '''function'''  
 +
*at those '''data points'''.  
  
  
Line 239: Line 246:
  
  
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us look at the code for '''Newton Divided difference method'''.  
+
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us look at the code for '''Newton Divided Difference method'''.  
  
  
Open the file '''Newton underscore divided dot sci''' on '''Scilab Editor.'''
+
Open the file '''Newton underscore Divided dot sci''' on '''Scilab Editor.'''
  
 
|-
 
|-
| style="border-top:n
+
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight
 +
 
 +
Newton_Divided(x,f,x0)
 +
 
 +
 
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We define the '''function Newton underscore Divided''' with '''arguments x, f '''and''' x zero'''.
 +
 
 +
 
 +
*'''x''' is a '''vector''' containing the '''data points''',
 +
'''f''' is the corresponding '''function''' *'''value''' and
 +
*''' x zero''' is the unknown '''interpolation point'''.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight
 +
 
 +
n = length(x);
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| We find the length of '''vector''' and then equate it to''' n.'''
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight
 +
 
 +
a(1) = f(1);
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The first value of '''vector''' is equated to '''a of one.'''
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight
 +
 
 +
for k = 1 : n - 1
 +
 
 +
D(k, 1) <nowiki>=</nowiki> (f(k+1) - f(k))/(x(k+1) - x(k))<nowiki>;</nowiki>
 +
 
 +
end
 +
 
 +
for j <nowiki>=</nowiki> 2:n-1
 +
 
 +
for k <nowiki>=</nowiki> 1:n-j
 +
 
 +
D(k, j) <nowiki>=</nowiki> (D(k+1, j-1) - D(k, j-1))/(x(k+j) - x(k))
 +
 
 +
end
 +
 
 +
end
 +
 
 +
disp(D, 'The Divided Difference Table')
 +
 
 +
 
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Then we apply '''divided difference algorithm''' and compute the '''divided difference table'''.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight
 +
 
 +
Df(1) = 1;
 +
 
 +
c(1) = a(1);
 +
 
 +
 
 +
for j = 2 : n
 +
 
 +
Df(j)=(x0 - x(j-1)).*Df(j-1);
 +
 
 +
c(j) = a(j).*Df(j);
 +
 
 +
end
 +
 
 +
 
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Then we find the '''coefficient list''' of the '''Newton polynomial'''
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Highlight
 +
 
 +
IP <nowiki>=</nowiki> sum(c)<nowiki>;</nowiki>
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"|
 +
*We sum the '''coefficient list '''
 +
*to find the value of the '''function'''
 +
*at given '''data point.'''
 +
 
 +
 
 +
 
 +
 
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Click on Execute and select Save and Execute
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Save and execute the file '''Newton underscore Divided dot sci. '''
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Switch to Scilab console
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Switch to '''Scilab console'''
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Type clc
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Clear the screen by typing '''c l c'''.
 +
 
 +
Press '''Enter'''.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Type on console
 +
 
 +
<nowiki>x=[2,2.5,3.25,4]</nowiki>
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us enter the '''data points vector'''
 +
 
 +
Type
 +
 
 +
'''x equal to open square bracket two comma two point five comma three point two five comma four close square bracket'''
 +
 
 +
 
 +
Press '''Enter'''.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Type on console
 +
 
 +
<nowiki>f=[0.5,0.4,0.3077,0.25]</nowiki>
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Then type values of the '''function'''
 +
 
 +
'''f equal to open square bracket zero point five comma zero point four comma zero point three zero seven seven comma zero point two five close square bracket'''
 +
 
 +
Press '''Enter'''.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Type on console
 +
 
 +
x0=3
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Type '''x zero equal to three'''
 +
 
 +
Press '''Enter'''.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Type on console
 +
 
 +
IP = Newton_Divided(x,f,x0)
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Then call the '''function '''by typing
 +
 
 +
'''i p equal to Newton underscore Divided open parenthesis x comma f comma x zero close parenthesis'''
 +
 
 +
Press '''Enter'''.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Show console
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The value of '''y at x equal to three '''is shown.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 9- Summary
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Let us summarize this tutorial.
 +
 
 +
 
 +
In this tutorial,
 +
 
 +
we have learnt to develop '''Scilab '''code for '''interpolation methods. '''
 +
 
 +
 
 +
We have also learnt to find the value of a '''function '''at new '''data point. '''
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| Slide 10- Assignment
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| Solve this problem on your own using '''Lagrange method''' and '''Newton's Divided Difference method'''.
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"|
 +
 
 +
* Watch the video available at [http://spoken-tutorial.org/What_is_a_Spoken_Tutorial http://spoken-tutorial.org/What_is_a_Spoken_Tutorial]
 +
 
 +
* It summarises the Spoken Tutorial project
 +
 
 +
* If you do not have good bandwidth, you can download and watch it
 +
 
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| * About the Spoken Tutorial Project<br/>
 +
 
 +
* Watch the video available at [http://spoken-tutorial.org/ http://spoken-tutorial.org]/What_is_a_Spoken_Tutorial <br/>
 +
 
 +
* It summarises the Spoken Tutorial project<br/>
 +
 
 +
* If you do not have good bandwidth, you can download and watch it
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Show Slide 12'''
 +
 
 +
'''Title: Spoken Tutorial Workshops'''
 +
 
 +
The Spoken Tutorial Project Team
 +
 
 +
* Conducts workshops using spoken tutorials
 +
 
 +
* Gives certificates for those who pass an online test
 +
 
 +
* For more details, please write to contact@spoken-tutorial.org
 +
 
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| The Spoken Tutorial Project Team
 +
 
 +
* Conducts workshops using spoken tutorials
 +
 
 +
* Gives certificates for those who pass an online test
 +
 
 +
* For more details, please write to contact at spoken hyphen tutorial dot org
 +
 
 +
 
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"| '''Show Slide 13'''
 +
 
 +
'''Title: Acknowledgement'''
 +
 
 +
* Spoken Tutorial Project is a part of the Talk to a Teacher project
 +
 
 +
* It is supported by the National Mission on Education through ICT, MHRD, Government of India
 +
 
 +
* More information on this Mission is available at
 +
 
 +
* [http://spoken-tutorial.org/NMEICT-Intro http://spoken-tutorial.org/NMEICT-][http://spoken-tutorial.org/NMEICT-Intro Intro]
 +
 
 +
 
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| * Spoken Tutorial Project is a part of the Talk to a Teacher project
 +
* It is supported by the National Mission on Education through ICT, MHRD, Government of India
 +
* More information on this Mission is available at
 +
* spoken hyphen tutorial dot org slash NMEICT hyphen Intro
 +
 
 +
|-
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:none;padding:0.097cm;"|
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding:0.097cm;"| This is Ashwini Patil signing off. Thanks for joining.
 +
 
 +
|}

Latest revision as of 22:34, 1 February 2014

Title of script: Numerical Interpolation

Author: Shamika

Keywords: Interpolation, Lagrange method, Newton Divided Difference method


Visual Cue
Narration
Slide 1 Dear Friends,

Welcome to the Spoken Tutorial on “Numerical Interpolation

Slide 2 -Learning Objective Slide At the end of this tutorial, you will learn how to:
  • Develop Scilab code for different Numerical Interpolation algorithms
  • Calculate new value of function from given data points
Slide 3-System Requirement slide To record this tutorial, I am using
  • Ubuntu 12.04 as the operating system
  • and Scilab 5.3.3 version
Slide 4- Prerequisites slide To practise this tutorial, a learner should have
  • basic knowledge of Scilab
  • and should know Numerical Interpolation

To learn Scilab, please refer to the relevant tutorials available on the Spoken Tutorial website.

Slide 5- Numerical Interpolation Numerical interpolation is a method of
  • constructing new data points
  • within the range of
  • a discrete set of known data points.

We can solve interpolation problems using numerical methods.

Slide 6- Lagrange Interpolation In Lagrange interpolation,
  • We pass a polynomial of degree N – 1 through N points.
  • Then, we find the unique N order polynomial y of x
  • which interpolates the data samples.
Slide 7- Example We are given the natural logarithm values for nine, nine point five and eleven.


We have to find the value of natural logarithm of nine point two.


Let us solve this problem using Lagrange interpolation method.

Show Lagrange.sci code on Scilab editor Let us look at the code for Lagrange interpolation.
Highlight

Lagrange(x0, x,f, n)


We define the function Lagrange with arguments x zero, x, f and n.
  • X zero is the unknown interpolation point.
  • x is the vector containing the data points.
  • f is the vector containing the values of the function at correspoding data points.
  • And n is the order of the interpolating polynomial.
Highlight

m = n + 1;

N = ones(1,m);


We use n to initialize m and vector N.

The order of the interpolating polynomial determines the number of nodes created.

Highlight

for j = 1:m

for k = 1:m

if (k<>j) then

N(j) = N(j)*(x0 - x(k))

D(j) = D(j)*(x(j) - x(k))

end

end


Then,
  • we apply Lagrange interpolation formula
  • to find the value of the numerator and denominator.
Highlight

L(j) = N(j)/D(j);


y = y + L(j)*f(j);

end

disp(L','L')

disp(f,'f(x)')


Then we divide the numerator and denominator to get the value of L.


We use L to find the value of the function y at the given data point.

Finally we display the value of L and f of x.

Click on Execute and select Save and Execute Let us save and execute the file.
Switch to Scilab console Switch to Scilab console to solve the example problem.
Type on console

x=[9.0,9.5,11.0]

Let us define the data points vector.

On the console type,

x equal to open square bracket nine point zero comma nine point five comma eleven point zero close square bracket.


Press Enter

Type on console

f=[2.1972,2.2513,2.3979]

Then type

f equal to open square bracket two point one nine seven two comma two point two five one three comma two point three nine seven nine close square bracket

Press Enter

Type on console

x0=9.2

Then type

x zero equal to nine point two

Press Enter

Type on console

n=2

Let us use a quadratic polynomial interpolating polynomial.

Type n equal to two

Press Enter

Type on console

y = Lagrange(x0, x,f, n)

To call the function, type

y equal to Lagrange open paranthesis x zero comma x comma f comma n close paranthesis


Press Enter.

Show console The value of the function y at x equal to nine point two is displayed.
Let us look at Newton's Divided Difference Method.
Slide 8- Newton's Divided Difference Method In this method, Divided Differences recursive method is used.


It uses lesser number of computation than Lagrange method.


In spite of this, the same interpolating polynomial, as in Lagrange method, is generated.

Slide 9- Example


Let us solve this example using Divided Difference method.


We are given

  • the data points and
  • the corresponding values of the function
  • at those data points.


We have to find the value of the function at x equal to three.

Switch to Scilab editor


Let us look at the code for Newton Divided Difference method.


Open the file Newton underscore Divided dot sci on Scilab Editor.

Highlight

Newton_Divided(x,f,x0)


We define the function Newton underscore Divided with arguments x, f and x zero.


  • x is a vector containing the data points,

f is the corresponding function *value and

  • x zero is the unknown interpolation point.
Highlight

n = length(x);

We find the length of vector and then equate it to n.
Highlight

a(1) = f(1);

The first value of vector is equated to a of one.
Highlight

for k = 1 : n - 1

D(k, 1) = (f(k+1) - f(k))/(x(k+1) - x(k));

end

for j = 2:n-1

for k = 1:n-j

D(k, j) = (D(k+1, j-1) - D(k, j-1))/(x(k+j) - x(k))

end

end

disp(D, 'The Divided Difference Table')


Then we apply divided difference algorithm and compute the divided difference table.
Highlight

Df(1) = 1;

c(1) = a(1);


for j = 2 : n

Df(j)=(x0 - x(j-1)).*Df(j-1);

c(j) = a(j).*Df(j);

end


Then we find the coefficient list of the Newton polynomial
Highlight

IP = sum(c);

  • We sum the coefficient list
  • to find the value of the function
  • at given data point.



Click on Execute and select Save and Execute Save and execute the file Newton underscore Divided dot sci.
Switch to Scilab console Switch to Scilab console
Type clc Clear the screen by typing c l c.

Press Enter.

Type on console

x=[2,2.5,3.25,4]

Let us enter the data points vector

Type

x equal to open square bracket two comma two point five comma three point two five comma four close square bracket


Press Enter.

Type on console

f=[0.5,0.4,0.3077,0.25]

Then type values of the function

f equal to open square bracket zero point five comma zero point four comma zero point three zero seven seven comma zero point two five close square bracket

Press Enter.

Type on console

x0=3

Type x zero equal to three

Press Enter.

Type on console

IP = Newton_Divided(x,f,x0)

Then call the function by typing

i p equal to Newton underscore Divided open parenthesis x comma f comma x zero close parenthesis

Press Enter.

Show console The value of y at x equal to three is shown.
Slide 9- Summary Let us summarize this tutorial.


In this tutorial,

we have learnt to develop Scilab code for interpolation methods.


We have also learnt to find the value of a function at new data point.

Slide 10- Assignment Solve this problem on your own using Lagrange method and Newton's Divided Difference method.
  • It summarises the Spoken Tutorial project
  • If you do not have good bandwidth, you can download and watch it


* About the Spoken Tutorial Project
  • It summarises the Spoken Tutorial project
  • If you do not have good bandwidth, you can download and watch it
Show Slide 12

Title: Spoken Tutorial Workshops

The Spoken Tutorial Project Team

  • Conducts workshops using spoken tutorials
  • Gives certificates for those who pass an online test
  • For more details, please write to contact@spoken-tutorial.org


The Spoken Tutorial Project Team
  • Conducts workshops using spoken tutorials
  • Gives certificates for those who pass an online test
  • For more details, please write to contact at spoken hyphen tutorial dot org


Show Slide 13

Title: Acknowledgement

  • Spoken Tutorial Project is a part of the Talk to a Teacher project
  • It is supported by the National Mission on Education through ICT, MHRD, Government of India
  • More information on this Mission is available at


* Spoken Tutorial Project is a part of the Talk to a Teacher project
  • It is supported by the National Mission on Education through ICT, MHRD, Government of India
  • More information on this Mission is available at
  • spoken hyphen tutorial dot org slash NMEICT hyphen Intro
This is Ashwini Patil signing off. Thanks for joining.

Contributors and Content Editors

Lavitha Pereira, Nancyvarkey