Difference between revisions of "Geogebra/C3/Radian-Measure/Hindi"
From Script | Spoken-Tutorial
(Created page with '{| border=1 || VISUAL CUE || NARRATION |- ||00:01 ||नमस्कार। इस ट्यूटोरियल में हम जियोजेब्रा का इस…') |
|||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{| border=1 | {| border=1 | ||
− | | | + | | '''Time''' |
− | | | + | | '''Narration''' |
− | + | ||
|- | |- | ||
Line 10: | Line 9: | ||
|- | |- | ||
||00:07 | ||00:07 | ||
− | ||इस ट्यूटोरियल का उद्देश्य, आपको जियोजेब्रा इनपुट बार से परिचित | + | ||इस ट्यूटोरियल का उद्देश्य, आपको जियोजेब्रा इनपुट बार से परिचित कराना और रेडियन्स पर पाठ के जरिये इनपुट बार में कमांड्स इस्तेमाल करना है। |
|- | |- | ||
Line 30: | Line 29: | ||
|- | |- | ||
||00:44 | ||00:44 | ||
− | ||और एक त्रिज्यखंड के क्षेत्रफल की गणना करने के नियत-कार्य को पूरा करेंगे। | + | ||और एक त्रिज्यखंड के क्षेत्रफल की गणना करने के लिए नियत-कार्य को पूरा करेंगे। |
|- | |- | ||
Line 38: | Line 37: | ||
|- | |- | ||
||01:00 | ||01:00 | ||
− | || drawing कमांड्स को इनपुट बार में टाइप करके भी अन्य तरीके से इस्तेमाल कर सकते हैं। | + | ||drawing कमांड्स को इनपुट बार में टाइप करके भी अन्य तरीके से इस्तेमाल कर सकते हैं। |
|- | |- | ||
Line 49: | Line 48: | ||
|- | |- | ||
||01:28 | ||01:28 | ||
− | ||मैं अब वृत्त पर दो बिंदु 'B' और 'C' | + | ||मैं अब वृत्त पर दो बिंदु 'B' और 'C' बनाउंगी। |
|- | |- | ||
||01:36 | ||01:36 | ||
− | ||अब हम इन दो बिन्दुओं के बीच एक चाप पूरा करेंगे, चाप बनाने के लिए मैं circular arc with centre between two points पर क्लिक | + | ||अब हम इन दो बिन्दुओं के बीच एक चाप पूरा करेंगे, चाप बनाने के लिए मैं circular arc with centre between two points पर क्लिक करती हूँ। |
|- | |- | ||
||01:47 | ||01:47 | ||
− | || | + | ||केंद्र 'A' 'B' और 'C' पर क्लिक करें, यह चाप पूर्ण करता है। ध्यान दें, कि चाप की लम्बाई d=5.83 इकाई है। |
|- | |- | ||
Line 65: | Line 64: | ||
|- | |- | ||
||02:10 | ||02:10 | ||
− | ||यहाँ यह आयतकार बॉक्स इनपुट बार है। इनपुट बार के आगे यहाँ 3 ड्रॉप डाउन बॉक्स हैं। यहाँ आप कुछ फंक्शन्स प्रवेश कर सकते हैं, कुछ पैरामीटर | + | ||यहाँ यह आयतकार बॉक्स इनपुट बार है। इनपुट बार के आगे यहाँ 3 ड्रॉप डाउन बॉक्स हैं। यहाँ आप कुछ फंक्शन्स प्रवेश कर सकते हैं, कुछ पैरामीटर परिभाषित कर सकते हैं और यह कमांड की है जिसमें आप यहाँ जियोजेब्रा विंडो में रेखाचित्र बना सकते हैं। |
|- | |- | ||
||02:30 | ||02:30 | ||
− | ||अब मैं यहाँ arc टाइप करना शुरू | + | ||अब मैं यहाँ arc टाइप करना शुरू करती हूँ, आप नोटिस करेंगे, कि इसने मेरे लिए कमांड पूरी की। मैं इस कमांड को यहाँ ड्रॉप डाउन बॉक्स में भी देख सकती हूँ। |
|- | |- | ||
||02:41 | ||02:41 | ||
− | ||मैं arc पर क्लिक | + | ||मैं arc पर क्लिक करती हूँ, आप नोटिस करेंगे, कि कमांड यहाँ वर्ग कोष्ठकों के साथ प्रदर्शित होती है। यदि मैं वर्ग कोष्ठक के बीच में क्लिक करती हूँ और enter दबाती हूँ, इस कमांड के लिए रचनाक्रम यहाँ प्रदर्शित होगा। |
|- | |- | ||
Line 89: | Line 88: | ||
|- | |- | ||
||03:24 | ||03:24 | ||
− | ||अतः हम यहाँ कमांड टाइप करेंगे, Arc[c,B, | + | ||अतः हम यहाँ कमांड टाइप करेंगे, Arc[c,B,C], और एंटर दबाएँगे। जियोजेब्रा केस सेंसिटिव है। |
|- | |- | ||
Line 155: | Line 154: | ||
|- | |- | ||
||06:29 | ||06:29 | ||
− | ||1 rad का मान डिग्रीज में कितना होता है? मैं इसे केवल थोडा जूम | + | ||1 rad का मान डिग्रीज में कितना होता है? मैं इसे केवल थोडा जूम करती हूँ। |
|- | |- | ||
Line 163: | Line 162: | ||
|- | |- | ||
||06:53 | ||06:53 | ||
− | ||इससे पहले मैं angle unit को फिर से degrees में निर्धारित | + | ||इससे पहले मैं angle unit को फिर से degrees में निर्धारित करुँगी क्योंकि हम 1 rad का मान डिग्रीज में पता करना चाहते हैं। |
|- | |- | ||
Line 171: | Line 170: | ||
|- | |- | ||
||07:13 | ||07:13 | ||
− | ||और जब मैं इस वृत्त को पूरा | + | ||और जब मैं इस वृत्त को पूरा करती हूँ हम देखते हैं कि कोण α लगभग 360 degrees होगा। |
|- | |- | ||
Line 203: | Line 202: | ||
|- | |- | ||
||09:34 | ||09:34 | ||
− | ||अब ध्यान दीजिये, जब मैं चाप की लम्बाई | + | ||अब ध्यान दीजिये, जब मैं चाप की लम्बाई बदलती हूँ, आप देखेंगे, कि “θ” का मान बदलता है, और चाप की लम्बाई और अंतरित कोण के बीच सम्बन्ध d=r.θ की तरह बनता है जहाँ d चाप की लम्बाई है, r वृत्त की त्रिज्या है और “θ” केंद्र पर रेडियन्स में बनाया गया कोण है। |
|- | |- | ||
||09:58 | ||09:58 | ||
− | ||अब जो हमने सीखा है, उसकी समझ को मज़बूत करने के लिए हम एक नियत कार्य को देखेंगे। | + | ||अब जो हमने सीखा है, उसकी समझ को मज़बूत करने के लिए हम एक नियत-कार्य को देखेंगे। |
|- | |- | ||
||10:10 | ||10:10 | ||
− | ||जो हमने सीखा, उसका इस्तेमाल करके दर्शाएँ कि त्रिज्यखंड का क्षेत्रफल Area = ½ “a2” “θ” कैसे होगा। | + | ||जो हमने सीखा, उसका इस्तेमाल करके दर्शाएँ, कि त्रिज्यखंड का क्षेत्रफल Area = ½ “a2” “θ” कैसे होगा। |
|- | |- | ||
Line 219: | Line 218: | ||
|- | |- | ||
||10:30 | ||10:30 | ||
− | ||इस नियत-कार्य को पूरा करने के लिए एक छोटा सुझाव है कि त्रिज्यखंड के क्षेत्रफल की चतुर्थांश से तुलना करें। | + | ||इस नियत-कार्य को पूरा करने के लिए एक छोटा सुझाव है, कि त्रिज्यखंड के क्षेत्रफल की चतुर्थांश से तुलना करें। |
|- | |- | ||
Line 230: | Line 229: | ||
|- | |- | ||
||11:06 | ||11:06 | ||
− | ||अधिक जानकारी यहाँ पर पायी जा सकती है। जियोजेब्रा के इस ट्यूटोरियल में मुझसे जुड़ने के लिए धन्यवाद। मैं | + | ||अधिक जानकारी यहाँ पर पायी जा सकती है। जियोजेब्रा के इस ट्यूटोरियल में मुझसे जुड़ने के लिए धन्यवाद। मैं श्रुति आर्य अब आपसे विदा लेती हूँ। |
|- | |- | ||
|} | |} |
Latest revision as of 12:53, 11 July 2014
Time | Narration |
00:01 | नमस्कार। इस ट्यूटोरियल में हम जियोजेब्रा का इस्तेमाल करके रेडियंस और त्रिज्यखंड (सेक्टर्स) पर कार्य करेंगे। |
00:07 | इस ट्यूटोरियल का उद्देश्य, आपको जियोजेब्रा इनपुट बार से परिचित कराना और रेडियन्स पर पाठ के जरिये इनपुट बार में कमांड्स इस्तेमाल करना है। |
00:15 | जियोजेब्रा आरम्भक, कृपया spoken-tutorial.org वेबसाइट पर Introduction to Geogebra और Angles and Triangles Basics को उद्घृत करें। |
00:25 | इस ट्यूटोरियल में, मैंने उबंटू वर्ज़न 10.04 LTS और जियोजेब्रा वर्ज़न 3.2.40 पर काम किया। |
00:35 | इस भाग में हम सीखेंगे, कि रेडियन का क्या होता है और रेडियन कैसे बनाएँ? |
00:39 | एक चाप की लम्बाई और उसके द्वारा अंतरित कोण के आपस के सम्बन्ध को जानेंगे। |
00:44 | और एक त्रिज्यखंड के क्षेत्रफल की गणना करने के लिए नियत-कार्य को पूरा करेंगे। |
00:49 | हम जियिजेब्रा में निम्न टूल्स इस्तेमाल करेंगे- Circle with center and radius, circular arc with centre between two points और segment between two points. |
01:00 | drawing कमांड्स को इनपुट बार में टाइप करके भी अन्य तरीके से इस्तेमाल कर सकते हैं। |
01:11 | इस जियोजेब्रा विंडो में अब हम circle with centre and radius का इस्तेमाल करके 5 इकाई त्रिज्या का एक वृत्त बनायेंगे। |
01:18 | circle with center and radius पर क्लिक करें, हम केंद्र को ओरिजिन पर चुनते हैं, radius 5 इकाई। |
01:28 | मैं अब वृत्त पर दो बिंदु 'B' और 'C' बनाउंगी। |
01:36 | अब हम इन दो बिन्दुओं के बीच एक चाप पूरा करेंगे, चाप बनाने के लिए मैं circular arc with centre between two points पर क्लिक करती हूँ। |
01:47 | केंद्र 'A' 'B' और 'C' पर क्लिक करें, यह चाप पूर्ण करता है। ध्यान दें, कि चाप की लम्बाई d=5.83 इकाई है। |
02:00 | अब हम इस चाप को डिलीट करेंगे और इसे दूसरे तरीके से बनायेंगे। यहाँ इनपुट बार में कमांड डालकर भी चाप को बना सकते हैं। |
02:10 | यहाँ यह आयतकार बॉक्स इनपुट बार है। इनपुट बार के आगे यहाँ 3 ड्रॉप डाउन बॉक्स हैं। यहाँ आप कुछ फंक्शन्स प्रवेश कर सकते हैं, कुछ पैरामीटर परिभाषित कर सकते हैं और यह कमांड की है जिसमें आप यहाँ जियोजेब्रा विंडो में रेखाचित्र बना सकते हैं। |
02:30 | अब मैं यहाँ arc टाइप करना शुरू करती हूँ, आप नोटिस करेंगे, कि इसने मेरे लिए कमांड पूरी की। मैं इस कमांड को यहाँ ड्रॉप डाउन बॉक्स में भी देख सकती हूँ। |
02:41 | मैं arc पर क्लिक करती हूँ, आप नोटिस करेंगे, कि कमांड यहाँ वर्ग कोष्ठकों के साथ प्रदर्शित होती है। यदि मैं वर्ग कोष्ठक के बीच में क्लिक करती हूँ और enter दबाती हूँ, इस कमांड के लिए रचनाक्रम यहाँ प्रदर्शित होगा। |
02:57 | अब रचनाक्रम जिसे हम चाप के लिए इस्तेमाल करेंगे, वह वृत्त और दो बिन्दुओं को परिभाषित करता है। |
03:04 | हमें वृत्त का नाम और दो बिन्दु जिनके बीच हम चाप बनाना चाहते हैं उन्हें परिभषित करने की आवश्यकता है। |
03:10 | algebra व्यू से हम देख सकते हैं, कि वृत्त को छोटे "c" से उद्घृत किया है, और बिंदु जिनके बीच में हम चाप (B,C) बनाना चाहते हैं दोनों बड़े अक्षर में हैं। |
03:24 | अतः हम यहाँ कमांड टाइप करेंगे, Arc[c,B,C], और एंटर दबाएँगे। जियोजेब्रा केस सेंसिटिव है। |
03:37 | अब चाप का रंग और मोटाई बदलते हैं, जिसे हमने यहाँ object properties से जोड़ा है। |
03:46 | हम color पर जाएँगे, हम इसे लाल निर्धारित करेंगे। style से हम मोटाई बढ़ाते हैं। |
04:05 | ध्यान दें, कि अब चाप मोटा, लाल प्रदर्शित हो रहा है। |
04:11 | अब हम दो वृत्तखंड AB और AC बनाएँगे। हम इसे फिर से दो तरीकों से करेंगे। |
04:17 | हम यहाँ 'segments between two points टूल पर क्लिक करते हैं, और ‘A' और 'B' पर क्लिक करते हैं। यह वृत्तखंड AB को पूर्ण करता है। |
04:28 | हम वृत्तखंड के लिए इनपुट बार से एक कमांड भी डाल सकते हैं। हम वृत्तखंड AC को पूरा करने के लिए Segment [A,C] करेंगे। |
04:40 | अब हमने चाप BC पूरा कर लिया है, वृत्तखंड AB और AC, और त्रिज्यखंड BAC बनाए। |
04:47 | अब हम चाप BC द्वारा A पर अंतरित कोण को परिभाषित करेंगे। हम इसे कोण 'α' कहेंगे। हम इसे यहाँ ड्रॉप डाउन बॉक्स से चुनेंगे। |
04:58 | कोण कमांड है angle[B,A,C]. |
05:10 | हम कोण को नाम देने के लिए मानक चलन का अनुसरण करेंगे। जब हम जियोजेब्रा में कोण को परिभाषित करेंगे। |
05:18 | हम देखते हैं, कि यहाँ 'α' का मान केंद्र पर अंतरित होता है जोकि 66.78 डिग्रीज है। |
05:30 | रेडियन एक चाप द्वारा वृत्त के केंद्र पर बना एक कोण होता है जिसकी लम्बाई वृत्त की त्रिज्या के बराबर होती है। |
05:40 | यदि हम यहाँ options में जाकर और angle units को radians में निर्धारित करके, कोण की इकाई को रेडियन्स में परिभाषित करते हैं। |
05:49 | हम पाएँगे कि α का मान अब 1.17 rad है। हम अब इसे 1 rad के नज़दीक लाने के लिए चाप की लम्बाई बदलेंगे। |
06:04 | ध्यान दें, कि चाप की लम्बाई d=5 इकाई है, और केंद्र पर बनाये गये कोण α का मान 1 rad है। |
06:17 | हम 1 rad परिभाषित कर चुके हैं, हम यह भी देख चुके हैं, कि यह कोण है जो अंतरित होगा, जब चाप की लम्बाई त्रिज्या के बराबर होगी। |
06:29 | 1 rad का मान डिग्रीज में कितना होता है? मैं इसे केवल थोडा जूम करती हूँ। |
06:41 | अब इस चाप की लम्बाई अर्ध-वृत्त की लम्बाई जितना बदलते हैं, अतः चाप लम्बाई [π a] है, जहाँ 'a' वृत्त की त्रिज्या है। |
06:53 | इससे पहले मैं angle unit को फिर से degrees में निर्धारित करुँगी क्योंकि हम 1 rad का मान डिग्रीज में पता करना चाहते हैं। |
07:03 | हम देखते हैं कि जब चाप की लम्बाई [π a] है जोकि एक अर्धवृत्त है, तब α का मान 180.21 डिग्रीज होता है। |
07:13 | और जब मैं इस वृत्त को पूरा करती हूँ हम देखते हैं कि कोण α लगभग 360 degrees होगा। |
07:27 | अतः हम इन दोनों से देखते हैं कि 1 rad का मान 57.32 डिग्रीज होगा। |
07:35 | अब हम चाप की लम्बाई, वृत्त और अंतरित कोण के बीच में सम्बन्ध को समझेंगे। इसके लिए हम α के मान को 57.32 से भाग देकर एक और कोण मान “θ” परिभाषित करेंगे। |
08:03 | ध्यान दें, कि “θ” का मान वास्तव में, रेडियन में कोण का मान है। हालाँकि संरूपण कठिनाई के कारण यह यहाँ डिग्री चिह्न में प्रदर्शित हो रहा है। |
08:15 | हम “θ” का इस्तेमाल करना इसी तरह से जारी रखेंगे और angle unit को रेडियन्स में नहीं बदलेंगे, क्योंकि हम चाप की लम्बाई और अंतरित कोण का इस्तेमाल करके एक सूत्र की सचित्र व्याख्या करना चाहते हैं। |
08:29 | संरूपण कठिनाई की वजह से यह सूत्र केवल इसी प्रकार से समझाया जा सकता है। |
08:36 | अब सूत्र प्रस्तुत करने के लिए हम जियोजेब्रा विंडो में टेक्स्ट प्रविष्ट करेंगे, जो चाप की लम्बाई का अंतरित कोण से सम्बद्ध रखता है। |
08:52 | टेक्स्ट कैसे लिखें, इसके परिचय के लिए कृपया angles and triangles basics ट्यूटोरियल का अनुकरण करें। |
09:34 | अब ध्यान दीजिये, जब मैं चाप की लम्बाई बदलती हूँ, आप देखेंगे, कि “θ” का मान बदलता है, और चाप की लम्बाई और अंतरित कोण के बीच सम्बन्ध d=r.θ की तरह बनता है जहाँ d चाप की लम्बाई है, r वृत्त की त्रिज्या है और “θ” केंद्र पर रेडियन्स में बनाया गया कोण है। |
09:58 | अब जो हमने सीखा है, उसकी समझ को मज़बूत करने के लिए हम एक नियत-कार्य को देखेंगे। |
10:10 | जो हमने सीखा, उसका इस्तेमाल करके दर्शाएँ, कि त्रिज्यखंड का क्षेत्रफल Area = ½ “a2” “θ” कैसे होगा। |
10:18 | जहाँ "a" त्रिज्या है, "θ" केंद्र में रेडियन में अंतरित कोण है, और सूत्र है Area = ½ “a2” “θ”. |
10:30 | इस नियत-कार्य को पूरा करने के लिए एक छोटा सुझाव है, कि त्रिज्यखंड के क्षेत्रफल की चतुर्थांश से तुलना करें। |
10:40 | नियत-कार्य जब बन जाएगा, इस तरह दिखेगा। हम यहाँ त्रिज्यखंड की चतुर्थांश से तुलना करके क्षेत्रफल की गणना करना चाहते हैं। |
10:55 | स्पोकन ट्यूटोरियल प्रोजेक्ट टॉक-टू-अ-टीचर प्रोजेक्ट का हिस्सा है। यह भारत सरकार के एमएचआरडी के “आईसीटी के माध्यम से राष्ट्रीय साक्षरता मिशन” द्वारा समर्थित है। |
11:06 | अधिक जानकारी यहाँ पर पायी जा सकती है। जियोजेब्रा के इस ट्यूटोरियल में मुझसे जुड़ने के लिए धन्यवाद। मैं श्रुति आर्य अब आपसे विदा लेती हूँ। |