Difference between revisions of "LibreOffice-Suite-Math-6.3/C2/Calculus-and-Logarithms/English"

From Script | Spoken-Tutorial
Jump to: navigation, search
(Created page with "Title: Calculus and Logarithms Keywords: LibreOffice Math, LibreOffice Writer, derivatives, partial derivatives, differential equations, integrals, logarithms, font size,...")
 
Line 21: Line 21:
 
* Write '''formulae ''' using '''logarithms'''.
 
* Write '''formulae ''' using '''logarithms'''.
 
* '''Customize''' the shortcuts.
 
* '''Customize''' the shortcuts.
 
  
 
|-  
 
|-  
Line 27: Line 26:
  
 
'''System Requirements'''
 
'''System Requirements'''
 
  
 
|| This tutorial is recorded using:
 
|| This tutorial is recorded using:
 
* '''Ubuntu Linux OS''' version 18.04 and  
 
* '''Ubuntu Linux OS''' version 18.04 and  
 
* '''LibreOffice Suite''' version 6.3.5
 
* '''LibreOffice Suite''' version 6.3.5
 
  
 
|-  
 
|-  
Line 53: Line 50:
 
* Please download and extract the files.
 
* Please download and extract the files.
 
* Make a copy and use them for practising.
 
* Make a copy and use them for practising.
 
  
 
|-  
 
|-  
 
|| Open the '''MathExample1.odt '''
 
|| Open the '''MathExample1.odt '''
 
|| Let us first open the '''MathExample1.odt file'''.
 
|| Let us first open the '''MathExample1.odt file'''.
 
  
 
|-  
 
|-  
|| Press '''Ctrl + Enter '''to go to a new page
+
|| Press '''Ctrl + Enter '''to go to a new page.
  
  
Line 85: Line 80:
  
 
Increase size to '''18 pt'''.
 
Increase size to '''18 pt'''.
 +
|| Before we go ahead, let us increase the '''font size''' to '''18 ''' point.
 +
|-
 +
|| Narration only
 +
|| Let us now learn how to write '''derivatives ''' and ''' differential equations'''.
  
  
|| Before we go ahead, let us increase the '''font size''' to '''18 ''' point.
+
'''Math''' provides a very easy way of writing them.
 
|-  
 
|-  
 
|| In FEW, copy and paste:
 
|| In FEW, copy and paste:
Line 94: Line 93:
  
 
'''df over dx newline newline'''
 
'''df over dx newline newline'''
|| Let us now learn how to write '''derivatives ''' and ''' differential equations'''.
+
||We have to treat the '''derivatives''' as '''fractions''' and use the '''markup over'''.
 
+
 
+
'''Math''' provides a very easy way of writing them.
+
 
+
 
+
We have to treat the '''derivatives''' as '''fractions''' and use the markup '''over'''.
+
 
+
 
+
To write a '''total derivative''', '''df by dx''', the mark up is ''''df over dx''''.
+
  
  
 +
To write a '''total derivative''', '''df by dx''', the '''markup''' is ''''df over dx''''.
  
 
|-  
 
|-  
Line 118: Line 109:
 
Point mouse over '''del '''symbol in the last '''formula '''in '''Writer '''gray box
 
Point mouse over '''del '''symbol in the last '''formula '''in '''Writer '''gray box
  
|| We can use the keyword '''‘partial’''' for a ''' partial derivative'''.
+
|| We can use the '''keyword ‘partial’''' for a ''' partial derivative'''.
  
  
The keyword '''‘partial’ ''' has to be within '''curly brackets '''.
+
The '''keyword ‘partial’ ''' has to be within '''curly brackets '''.
  
  
Line 137: Line 128:
  
  
'''Newton's second law of motion which describes
+
'''Newton's second law of motion which describes the relationship between acceleration “and” force'''.
 
+
the relationship between acceleration “and” force'''.
+
 
|| Let’s write an example to show ''' Newton'''’s second law of motion.
 
|| Let’s write an example to show ''' Newton'''’s second law of motion.
  
  
Observe that “'''and'''” appears as inverted '''V''' as it a reserved word.
+
Observe that “'''and'''” appears as inverted '''V''' as it is a '''reserved''' word.
  
  
 
To make it appear as a normal text we have to enclose it within double quotes.
 
To make it appear as a normal text we have to enclose it within double quotes.
 
|-  
 
|-  
|| In FEW, press Enter twice, copy and paste:
+
|| In FEW, press '''Enter''' twice, copy and paste:
  
 
'''F(t) = m {{d^2}x } over {dt^2 } newline newline'''
 
'''F(t) = m {{d^2}x } over {dt^2 } newline newline'''
Line 163: Line 152:
  
 
Here we have used '''curly brackets''' to state the order of operation.
 
Here we have used '''curly brackets''' to state the order of operation.
 
 
  
 
|-  
 
|-  
|| In FEW, press Enter twice, copy and paste:
+
|| In FEW, press '''Enter''' twice, copy and paste:
 
+
'''''''''''''''
  
 
'''Newton’s Law of cooling. newline'''
 
'''Newton’s Law of cooling. newline'''
Line 209: Line 196:
 
|| Pause the tutorial and do this assignment.
 
|| Pause the tutorial and do this assignment.
  
 
+
*Write the '''markup''' for following '''derivative'''.
Write the '''markup''' for following '''derivative'''.
+
*Use '''scalable '''brackets.
 
+
 
+
Use '''scalable '''brackets.
+
 
|-  
 
|-  
 
|| Click outside of the '''Writer '''gray box.  
 
|| Click outside of the '''Writer '''gray box.  
Line 228: Line 212:
  
 
Press '''Ctrl''' and '''Enter ''' keys to go to the new page.
 
Press '''Ctrl''' and '''Enter ''' keys to go to the new page.
 
  
 
|-  
 
|-  
|| Type: “'''Integral Equations: '''” and press Enter.
+
|| Type: “'''Integral Equations: '''” and press '''Enter'''.
 
+
|| Type “'''Integrals:''' ” and press Enter.
+
 
+
  
 +
|| Type “'''Integrals:''' ” and press '''Enter'''.
  
 
|-  
 
|-  
Line 241: Line 222:
  
 
From the submenu >> select '''Formula''' option.
 
From the submenu >> select '''Formula''' option.
 
 
 
|| Now let us call the '''Math''' application.
 
|| Now let us call the '''Math''' application.
  
Line 251: Line 230:
 
'''Font size''' >> Increase size to '''18 pt'''.  
 
'''Font size''' >> Increase size to '''18 pt'''.  
 
|| Let’s increase the '''font size''' to '''18 ''' point .
 
|| Let’s increase the '''font size''' to '''18 ''' point .
 
  
 
|-  
 
|-  
Line 279: Line 257:
  
  
To write an '''integral ''' symbol, we need to use the markup “'''int'''.
+
To write an '''integral ''' symbol, we need to use the '''markup “int”'''.
  
  
  
To specify the '''limits a ''' and '''b''', we have used the markup '''‘from’ ''' and '''‘to’'''.
+
To specify the '''limits a ''' and '''b''', we have used the '''markup ‘from’ ''' and '''‘to’'''.
  
  
 
Notice the '''formula ''' in the '''Writer ''' gray box.
 
Notice the '''formula ''' in the '''Writer ''' gray box.
 
|-  
 
|-  
|| In FEW, press Enter twice, copy and paste:
+
|| In FEW, press '''Enter''' twice, copy and paste:
  
 
'''Double Integral newline'''
 
'''Double Integral newline'''
Line 298: Line 276:
  
 
‘'''iint'''’.
 
‘'''iint'''’.
 
 
 
 
|| Let us write an example of a ''' double integral '''to calculate the area of a region.
 
|| Let us write an example of a ''' double integral '''to calculate the area of a region.
  
  
The formula is as shown on the screen.
+
The '''formula''' is as shown on the screen.
  
  
The mark up for a '''double integral ''' is '''iint'''.
+
The '''markup''' for a '''double integral ''' is '''iint'''.
 
|-  
 
|-  
 
|| '''Triple Integral newline'''
 
|| '''Triple Integral newline'''
Line 314: Line 289:
  
 
In FEW, point mouse over '''‘iiint’.'''
 
In FEW, point mouse over '''‘iiint’.'''
 
 
 
 
|| Similarly, we can use a '''triple integral''' to find the volume of a cuboid.
 
|| Similarly, we can use a '''triple integral''' to find the volume of a cuboid.
  
  
The markup for a '''triple integral ''' is '''iiint'''.
+
The '''markup''' for a '''triple integral ''' is '''iiint'''.
 
|-  
 
|-  
 
|| In FEW, point mouse over the '''_ '''
 
|| In FEW, point mouse over the '''_ '''
Line 328: Line 300:
  
 
Point mouse over the last 3 formulae in '''Writer '''gray box.
 
Point mouse over the last 3 formulae in '''Writer '''gray box.
|| We can use the '''subscript ''' markup to specify the '''Limits ''' of the '''integral'''.
+
|| We can use the '''subscript markup''' to specify the '''Limits ''' of the '''integral'''.
 
+
 
+
  
 
'''Subscript''' is used to place the character to the bottom right of the ''' integral'''.
 
'''Subscript''' is used to place the character to the bottom right of the ''' integral'''.
Line 341: Line 311:
  
 
* '''Integral''' with''' limits 0 to 1 of  
 
* '''Integral''' with''' limits 0 to 1 of  
 
 
{square root of x } dx.'''br/>
 
{square root of x } dx.'''br/>
  
* '''Double integral from T of  
+
* '''Double integral from T of { 2 Sin x – 3 y cubed + 5 } dx dy'''
 
+
{ 2 Sin x – 3 y cubed + 5 } dx dy'''
+
  
 
|| Pause the tutorial and do this assignment.
 
|| Pause the tutorial and do this assignment.
  
 
Write the '''markup''' for the following '''integrals'''.
 
Write the '''markup''' for the following '''integrals'''.
 +
 +
|-
 +
||
 +
|| Now let us see how to write '''formulae '''containing '''logarithms'''.
  
  
 +
First, let us go to a new page.
 
|-  
 
|-  
 
|| Click outside of the '''Writer '''gray box.  
 
|| Click outside of the '''Writer '''gray box.  
Line 358: Line 330:
  
 
Press '''Ctrl + Enter.'''
 
Press '''Ctrl + Enter.'''
 
+
||Click outside the '''Writer '''gray box to go back to '''Writer'''.
|| Now let us see how to write '''formulae '''containing '''logarithms'''.
+
 
+
 
+
First let us go to a new page.
+
 
+
Click outside the '''Writer '''gray box to go back to '''Writer'''.
+
  
  
Line 370: Line 336:
  
  
Let us write the logarithms in a fresh '''Math '''object.
+
Let us write the '''logarithms''' in a fresh '''Math object'''.
 
|-  
 
|-  
|| Type '''‘Logarithms''': ‘ and press Enter twice.
+
|| Type '''‘Logarithms''': ‘ and press Enter.
  
  
Line 393: Line 359:
  
 
In FEW, point mouse over above markup
 
In FEW, point mouse over above markup
 
 
  
 
|| A simple formula using '''logarithm ''' is '''Log 1000 ''' to the ''' base 10 ''' is equal to 3.
 
|| A simple formula using '''logarithm ''' is '''Log 1000 ''' to the ''' base 10 ''' is equal to 3.
Line 403: Line 367:
  
 
|-  
 
|-  
|| In FEW, press Enter twice, copy and paste:
+
|| In FEW, press '''Enter''' twice, copy and paste:
  
 
'''log_2 (64) = log_2 (2)^ 6 = 6 log_2 (2) = 6 (1) = 6 newline newline'''
 
'''log_2 (64) = log_2 (2)^ 6 = 6 log_2 (2) = 6 (1) = 6 newline newline'''
Line 409: Line 373:
  
  
In FEW, press Enter twice, copy and paste:
+
In FEW, press '''Enter''' twice, copy and paste:
  
 
'''ln(t) = int from 1 to t {1 over x} dx'''
 
'''ln(t) = int from 1 to t {1 over x} dx'''
Line 418: Line 382:
  
  
Now let us write the integral representation of '''natural logarithm ''' using ''' markup'''.
+
Now let us write the '''integral''' representation of '''natural logarithm ''' using ''' markup'''.
  
  
 
'''Natural logarithm of t is equal to the integral from 1 to t of 1 by x dx'''.
 
'''Natural logarithm of t is equal to the integral from 1 to t of 1 by x dx'''.
 +
|-
 +
||
 +
|| Now let us learn about '''shortcuts'''.
  
 +
 +
It is a good practice to add '''shortcut ''' keys to make our work easier.
  
 
|-  
 
|-  
Line 435: Line 404:
  
 
Click on the '''Keyboard''' tab
 
Click on the '''Keyboard''' tab
 
+
||Go to '''Tools ''' menu and select '''Customize ''' option.
 
+
 
+
|| Now let us learn about '''shortcuts'''.
+
 
+
 
+
It is a good practice to add '''shortcut ''' keys to make our work easier.
+
 
+
 
+
Go to '''Tools ''' menu and select '''Customize ''' option.
+
  
  
Line 451: Line 411:
  
  
Click the '''Keyboard ''' tab to access the options for adding '''keyboard ''' shortcuts.
+
Click the '''Keyboard ''' tab to access the options for adding '''keyboard shortcuts'''.
 
+
  
 
|-  
 
|-  
Line 459: Line 418:
  
 
Go to '''function list''' at the bottom of the screen and select '''Import Formula'''.
 
Go to '''function list''' at the bottom of the screen and select '''Import Formula'''.
 
 
 
 
|| Select the '''Writer radio button ''' at the extreme right if not selected.
 
|| Select the '''Writer radio button ''' at the extreme right if not selected.
  
Line 467: Line 423:
 
In the '''Function ''' list, scroll down and select '''Formula'''.
 
In the '''Function ''' list, scroll down and select '''Formula'''.
 
|-
 
|-
|| Click on '''f7 ''' in the '''shortcut ''' keys list at the top of the dialog box.
+
|| Click on '''F7 ''' in the '''shortcut ''' keys list at the top of the dialog box.
  
  
 
Click on '''Modify ''' button at the right of the dialog box.
 
Click on '''Modify ''' button at the right of the dialog box.
 
+
|| In the '''Shortcut Keys'''  list, let us select '''F7'''.
 
+
 
+
|| In the '''Shortcut Keys'''  list, let us select '''f7'''.
+
  
  
 
Click the '''Modify ''' button.
 
Click the '''Modify ''' button.
  
Your '''keyboard ''' shortcut will appear in the '''Keys ''' list.
+
Your '''keyboard shortcut''' will appear in the '''Keys ''' list.
  
  
If necessary, continue to add '''keyboard ''' shortcuts using the above steps.
+
If necessary, continue to add '''keyboard shortcuts''' using the above steps.
 
|-
 
|-
 
|| Click '''OK ''' at the bottom.
 
|| Click '''OK ''' at the bottom.
|| Click the '''OK ''' button to save your keyboard shortcuts.  
+
|| Click the '''OK ''' button to save your '''keyboard shortcuts'''.  
 
+
  
 
|-  
 
|-  
Line 505: Line 457:
  
 
|| In this tutorial we have learnt how to:
 
|| In this tutorial we have learnt how to:
 
+
* Write '''derivatives ''' and '''differential equations'''.
 
+
* Write '''derivatives ''' and '''differential ''' equations.
+
 
* Write '''integrals'''.
 
* Write '''integrals'''.
 
* Write '''formulae '''using '''logarithms'''.
 
* Write '''formulae '''using '''logarithms'''.
* '''Customize''' the shortcuts.
+
* '''Customize''' the '''shortcuts'''.
 
+
  
 
|-  
 
|-  
Line 519: Line 468:
  
 
'''log x to the power of p to the base b is equal to p times log x to the base b'''
 
'''log x to the power of p to the base b is equal to p times log x to the base b'''
 
 
 
|| Here is an '''assignment '''for you
 
|| Here is an '''assignment '''for you
 
+
* Write a '''markup''' for the following '''logarithm'''.  
 
+
:Solve '''log 1024 ''' to the ''' base 2'''.
Write a markup for the following '''logarithm'''.  
+
 
+
 
+
Solve '''log 1024 ''' to the ''' base 2'''.
+
 
+
 
+
  
 
|-  
 
|-  
 
 
|| '''Slide''':
 
|| '''Slide''':
  
Line 539: Line 479:
 
* The video at the following link summarises the Spoken Tutorial project.
 
* The video at the following link summarises the Spoken Tutorial project.
 
* Please download and watch it.
 
* Please download and watch it.
 
  
 
|-  
 
|-  
Line 545: Line 484:
  
 
'''Spoken tutorial workshops'''
 
'''Spoken tutorial workshops'''
 
 
  
 
||  
 
||  
 
* We conduct workshops using '''spoken tutorials''' and give certificates.
 
* We conduct workshops using '''spoken tutorials''' and give certificates.
 
* For more details, please contact us.
 
* For more details, please contact us.
 
  
 
|-
 
|-

Revision as of 15:21, 30 June 2022

Title: Calculus and Logarithms

Keywords: LibreOffice Math, LibreOffice Writer, derivatives, partial derivatives, differential equations, integrals, logarithms, font size, key board shortcuts, video tutorial.

Visual Cue Narration
Slide:

Title Slide

Welcome to the spoken tutorial on Calculus and Logarithms.
Slide:

Learning Objectives

In this tutorial, we will learn how to:
  • Write derivatives and differential equations.
  • Write integrals.
  • Write formulae using logarithms.
  • Customize the shortcuts.
Slide:

System Requirements

This tutorial is recorded using:
  • Ubuntu Linux OS version 18.04 and
  • LibreOffice Suite version 6.3.5
Slide: Prerequisites

https:\\spoken-tutorial.org

To follow this tutorial, learner should be familiar with Math interface.


If not please access the relevant tutorials on this website.

Slide:

Code Files

  • The files used in the tutorial are provided in the Code files link.
  • Please download and extract the files.
  • Make a copy and use them for practising.
Open the MathExample1.odt Let us first open the MathExample1.odt file.
Press Ctrl + Enter to go to a new page.


Type “Derivatives and Differential Equations: ” Press Enter .

Press Ctrl and Enter, keys to go to a new page.


Now type “Derivatives and Differential Equations: ” and press Enter.

Click on the Insert menu >> select the Object.

From the sub-menu >> select the Formula option.


Let us call the Math application inside Writer.

Click on the Insert menu and select Object.

From the sub-menu, select Formula.

Click Format menu >> Font size.

Increase size to 18 pt.

Before we go ahead, let us increase the font size to 18 point.
Narration only Let us now learn how to write derivatives and differential equations.


Math provides a very easy way of writing them.

In FEW, copy and paste:

Total Derivative:

df over dx newline newline

We have to treat the derivatives as fractions and use the markup over.


To write a total derivative, df by dx, the markup is 'df over dx'.

In FEW, press Enter twice, copy and paste:

{partial f} over {partial x} newline newline.


In FEW, point the mouse over curly brackets in the last markup.


Point mouse over del symbol in the last formula in Writer gray box

We can use the keyword ‘partial’ for a partial derivative.


The keyword ‘partial’ has to be within curly brackets .


Notice the del symbol for partial derivatives in the Writer gray box.


The partial derivative is del f over del x.

In FEW, press Enter twice, copy and paste:

Newton's second law of motion describes the relationship between acceleration and force. newline.


F = ma newline newline.


Newton's second law of motion which describes the relationship between acceleration “and” force.

Let’s write an example to show Newton’s second law of motion.


Observe that “and” appears as inverted V as it is a reserved word.


To make it appear as a normal text we have to enclose it within double quotes.

In FEW, press Enter twice, copy and paste:

F(t) = m {{d^2}x } over {dt^2 } newline newline


In FEW, point mouse over curly brackets in the last line.

Point mouse the last formula Writer gray box.

Let us write an ordinary differential equation.


F of t is equal to m times d squared x over d t squared.


Here we have used curly brackets to state the order of operation.

In FEW, press Enter twice, copy and paste:

''''''''''

Newton’s Law of cooling. newline

If theta of t is the temperature of an object at time t,

newline then we can write a differential equation: newline

d of `theta over d of t "is equal to" minus k into theta minus S.

newline where S is the temperature of the surrounding environment.

newline newline


{d %theta} over dt ~=~ -k(%theta – S) newline newline


Point mouse over the last formula in Writer gray box.

Let us write the differential equation for Newton’s law of cooling.


These lines explain Newton’s law of cooling.


Notice the equation in the Writer gray box.

Click Save icon on the standard toolbar. Let us save the file now.
Slide:


Assignment


d squared y by d x squared is equal to d by dx of (dy by dx).

Pause the tutorial and do this assignment.
  • Write the markup for following derivative.
  • Use scalable brackets.
Click outside of the Writer gray box.


Press Ctrl + Enter.

Now let us see how to write integrals.


Let us go to a new page.

Click outside the Writer gray box to go to the Writer document.


Press Ctrl and Enter keys to go to the new page.

Type: “Integral Equations: ” and press Enter. Type “Integrals: ” and press Enter.
Click on the Insert menu >> select Object.

From the submenu >> select Formula option.

Now let us call the Math application.


Click Format menu >>

Font size >> Increase size to 18 pt.

Let’s increase the font size to 18 point .
In FEW, copy and paste:


function f of a real variable x "and" newline

an interval a, b of the real line on the x-axis,

newline the definite integral is written as

Integral "from" a "to" b, ` f of x dx newline newline


int from a to b f(x) dx newline newline


In FEW, point mouse over ‘int’ word in the last line

And point over ‘from’ and ‘to’


Point mouse over the last formula in Writer gray box

Here is an example of an integral.


To write an integral symbol, we need to use the markup “int”.


To specify the limits a and b, we have used the markup ‘from’ and ‘to’.


Notice the formula in the Writer gray box.

In FEW, press Enter twice, copy and paste:

Double Integral newline

iint from D p dx dy, `"where f(x,y) = p in the region D" newline newline


In FEW, point the mouse over

iint’.

Let us write an example of a double integral to calculate the area of a region.


The formula is as shown on the screen.


The markup for a double integral is iint.

Triple Integral newline

iiint_cuboid 1 dx dy dz, `"where constant function f(x, y, z) = 1"

In FEW, point mouse over ‘iiint’.

Similarly, we can use a triple integral to find the volume of a cuboid.


The markup for a triple integral is iiint.

In FEW, point mouse over the _

character in the last line


Point mouse over the last 3 formulae in Writer gray box.

We can use the subscript markup to specify the Limits of the integral.

Subscript is used to place the character to the bottom right of the integral.


Slide:

Assignment

  • Integral with limits 0 to 1 of

{square root of x } dx.br/>

  • Double integral from T of { 2 Sin x – 3 y cubed + 5 } dx dy
Pause the tutorial and do this assignment.

Write the markup for the following integrals.

Now let us see how to write formulae containing logarithms.


First, let us go to a new page.

Click outside of the Writer gray box.


Press Ctrl + Enter.

Click outside the Writer gray box to go back to Writer.


Press Ctrl and Enter keys to go to the new page.


Let us write the logarithms in a fresh Math object.

Type ‘Logarithms: ‘ and press Enter.


Click Insert >> Object >> Formula.


Click Format >> >> Font Size. Make it 18pt.

Type ‘Logarithms: ‘ and press Enter .


Let us call Math application again.


Let’s change the font size to 18 point.

In FEW, copy and paste:

log_10 1000 = 3 newline newline


In FEW, point mouse over above markup

A simple formula using logarithm is Log 1000 to the base 10 is equal to 3.


Notice the markup here.


In FEW, press Enter twice, copy and paste:

log_2 (64) = log_2 (2)^ 6 = 6 log_2 (2) = 6 (1) = 6 newline newline


In FEW, press Enter twice, copy and paste:

ln(t) = int from 1 to t {1 over x} dx


Point mouse over last formula in the Writer gray box

Here is another example: Log 64 to the base 2 is equal to 6.


Now let us write the integral representation of natural logarithm using markup.


Natural logarithm of t is equal to the integral from 1 to t of 1 by x dx.

Now let us learn about shortcuts.


It is a good practice to add shortcut keys to make our work easier.

Cursor on the interface.


Click on Tools >> >> click on Customize.


Point towards the Customize dialog box


Click on the Keyboard tab

Go to Tools menu and select Customize option.


Customize dialog box appears.


Click the Keyboard tab to access the options for adding keyboard shortcuts.

Select Math radio button.


Go to function list at the bottom of the screen and select Import Formula.

Select the Writer radio button at the extreme right if not selected.


In the Function list, scroll down and select Formula.

Click on F7 in the shortcut keys list at the top of the dialog box.


Click on Modify button at the right of the dialog box.

In the Shortcut Keys list, let us select F7.


Click the Modify button.

Your keyboard shortcut will appear in the Keys list.


If necessary, continue to add keyboard shortcuts using the above steps.

Click OK at the bottom. Click the OK button to save your keyboard shortcuts.
Ctrl + S. Let us now save the changes.
Narration only: With this we have come to the end of this tutorial.


Let us summarize.

Slide:

Summary


In this tutorial we have learnt how to:
  • Write derivatives and differential equations.
  • Write integrals.
  • Write formulae using logarithms.
  • Customize the shortcuts.
Slide:

Assignment

log x to the power of p to the base b is equal to p times log x to the base b

Here is an assignment for you
  • Write a markup for the following logarithm.
Solve log 1024 to the base 2.
Slide:

About Spoken Tutorial Project

  • The video at the following link summarises the Spoken Tutorial project.
  • Please download and watch it.
Slide:

Spoken tutorial workshops

  • We conduct workshops using spoken tutorials and give certificates.
  • For more details, please contact us.
Slide:

Answers for THIS Spoken Tutorial

Please post your time queries in this forum.
Slide:

Acknowledgement

The Spoken Tutorial project is funded by the Ministry of Education, Govt. of India.
Slide:

Thank you

Acknowledgement to DesiCrew

This tutorial was originally contributed by DesiCrew Solutions Pvt. Ltd. in 2011

This is Madhuri Ganapathi along with the Spoken Tutorial team from IIT Bombay.

Thank you for watching.

Contributors and Content Editors

Madhurig, Nancyvarkey, Nirmala Venkat