Difference between revisions of "Scilab/C4/ODE-Applications/Kannada"

From Script | Spoken-Tutorial
Jump to: navigation, search
(Created page with "{| Border=1 |'''Time''' |'''Narration''' |- | 00:01 | ಸ್ನೇಹಿತರೇ, ಸೈಲ್ಯಾಬ್ ನ '''Solving ODEs using Scilab ode function''' ನ ಬಗ್...")
 
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{| Border=1
 
{| Border=1
 
 
|'''Time'''
 
|'''Time'''
 
 
|'''Narration'''
 
|'''Narration'''
  
 
|-
 
|-
 
| 00:01
 
| 00:01
| ಸ್ನೇಹಿತರೇ, ಸೈಲ್ಯಾಬ್ '''Solving ODEs using Scilab ode function''' ನ ಬಗ್ಗೆ ಇರುವ ಈ ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್  ಗೆ ನಿಮಗೆ ಸ್ವಾಗತ.
+
| ಸೈಲ್ಯಾಬ್ ನಲ್ಲಿ, '''Solving ODEs using Scilab ode function''' ಎಂಬ  ಈ ಸ್ಪೋಕನ್-ಟ್ಯುಟೋರಿಯಲ್  ಗೆ ನಿಮಗೆ ಸ್ವಾಗತ.
 
|-
 
|-
 
| 00:09
 
| 00:09
| ಈ ಟ್ಯುಟೋರಿಯಲ್ ನ ಕೊನೆಯಲ್ಲಿ ನೀವು:  
+
| ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ ನೀವು:  
 
|-
 
|-
 
|00:12
 
|00:12
 
| ಸೈಲ್ಯಾಬ್ ode ಫಂಕ್ಷನ್ ಅನ್ನು ಹೇಗೆ ಬಳಸುವುದು,
 
| ಸೈಲ್ಯಾಬ್ ode ಫಂಕ್ಷನ್ ಅನ್ನು ಹೇಗೆ ಬಳಸುವುದು,
 
 
|-
 
|-
 
|00:15
 
|00:15
| '''ODE''' ಗಳ ವಿಶಿಷ್ಟ ಉದಾಹರಣೆಗಳ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯುವುದು ಮತ್ತು
+
| '''ODE''' ಗಳ ಕೆಲವು ಮಾದರಿಯ ಉದಾಹರಣೆಗಳನ್ನು  ಸಾಲ್ವ್ ಮಾಡುವುದು
 
|-
 
|-
 
| 00:18
 
| 00:18
| ಉತ್ತರವನ್ನು ಗ್ರಾಫ್ ನಲ್ಲಿ ಪ್ಲೋಟ್ ಮಾಡುವುದು- ಇವುಗಳ ಬಗ್ಗೆ ಕಲಿಯುವಿರಿ.
+
| ಮತ್ತು ಉತ್ತರವನ್ನು ಪ್ಲಾಟ್ (plot) ಮಾಡುವುದು- ಇವುಗಳ ಬಗ್ಗೆ ಕಲಿಯುವಿರಿ.
 
|-
 
|-
 
|00:21
 
|00:21
|ವಿಶಿಷ್ಟ ಉದಾಹರಣೆಗಳು :
+
|ಇಲ್ಲಿ, ಮಾದರಿಯ ಉದಾಹರಣೆಗಳು :
 
+
 
|-
 
|-
 
| 00:24
 
| 00:24
|ಸರಳ ಪೆಂಡುಲಮ್ ನ ಚಲನೆ,  
+
|ಸರಳ ಲೋಲಕದ (simple pendulum) ಚಲನೆ,  
 
|-
 
|-
 
| 00:26
 
| 00:26
| '''Van der Pol equation'''(ವ್ಯಾನ್ ಡರ್ ಪೋಲ್ ಇಕ್ವೇಶನ್)
+
| '''Van der Pol equation''' (ವ್ಯಾನ್ ಡರ್ ಪಾಲ್ ಇಕ್ವೇಶನ್)
 
+
 
|-
 
|-
 
|00:28
 
|00:28
| ಮತ್ತು ''' Lorenz system'''(ಲೋರೆಂಝ್ ಸಿಸ್ಟಮ್ ) ಗಳಾಗಿವೆ.
+
| ಮತ್ತು ''' Lorenz system''' (ಲೋರೆಂಝ್ ಸಿಸ್ಟಮ್ ) ಗಳಾಗಿವೆ.
 
|-
 
|-
 
|00:30
 
|00:30
Line 46: Line 41:
 
|-
 
|-
 
|00:40
 
|00:40
|ಈ ಟ್ಯುಟೋರಿಯಲ್ ಅನ್ನು ಅಭ್ಯಾಸ ಮಾಡಲು, ನೀವು ಸೈಲ್ಯಾಬ್ ನ ಕುರಿತು ಸ್ವಲ್ಪ ತಿಳಿದಿರಬೇಕು ಮತ್ತು
+
|ಈ ಟ್ಯುಟೋರಿಯಲ್ ಅನ್ನು ಅಭ್ಯಾಸ ಮಾಡಲು, ನೀವು ಸೈಲ್ಯಾಬ್ ನ ಬಗ್ಗೆ ಮತ್ತು
 
|-
 
|-
 
|00:45
 
|00:45
| '''ODE''' ಗಳ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಲು ತಿಳಿದಿರಬೇಕು.
+
| '''ODE''' ಗಳನ್ನು ಸಾಲ್ವ್ (solve) ಮಾಡುವುದನ್ನು  ತಿಳಿದಿರಬೇಕು.
 
|-
 
|-
 
|00:48
 
|00:48
| ಸೈಲ್ಯಾಬ್ ಗಾಗಿ ಲಭ್ಯವಿರುವ ಸಂಬಂಧಿತ ಟ್ಯುಟೋರಿಯಲ್ ಗಳನ್ನು, ''' spoken tutorial''' ವೆಬ್ಸೈಟ್ ನಲ್ಲಿ ನೋಡಿ.  
+
| ಸೈಲ್ಯಾಬ್ ಅನ್ನು ಕಲಿಯಲು, ದಯವಿಟ್ಟು '''Spoken Tutorial''' ವೆಬ್ಸೈಟ್ ನಲ್ಲಿ ಲಭ್ಯವಿರುವ, ಸಂಬಂಧಿತ ಟ್ಯುಟೋರಿಯಲ್ ಗಳನ್ನು ನೋಡಿ.  
 
|-
 
|-
 
| 00:56
 
| 00:56
| '''ode''' ಫಂಕ್ಷನ್ ಒಂದು ಸಾಮಾನ್ಯ ಡಿಫರೆನ್ಷಿಯಲ್ ಇಕ್ವೇಶನ್ ಗಳ ಪರಿಹಾರ ಕ್ರಮವಾಗಿದೆ.  
+
| '''ode''' ಫಂಕ್ಷನ್, 'ಡಿಫರೆನ್ಷಿಯಲ್ ಇಕ್ವೇಶನ್' ಗಳನ್ನು ಸಾಲ್ವ್ ಮಾಡುವ ಒಂದು ಸಾಮಾನ್ಯ ವಿಧಾನವಾಗಿದೆ.  
 
|-
 
|-
 
| 01:01
 
| 01:01
||ಇದರ ಸಿಂಟ್ಯಾಕ್ಸ್ : '''y equal to ode''' within parenthesis '''y zero, t zero, t''' ಮತ್ತು '''f''' ಎಂದಾಗಿದೆ.
+
||ಇದರ ಸಿಂಟ್ಯಾಕ್ಸ್ ಹೀಗಿದೆ: '''y equal to ode''' within parenthesis '''y zero, t zero, t''' ಮತ್ತು '''f'''.
 
|-
 
|-
 
|01:10
 
|01:10
|| ಇಲ್ಲಿ '''y zero''' -ಇದು '''ODE''' ಗಳ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಆಗಿದೆ.
+
|| ಇಲ್ಲಿ, '''y zero''', '''ODE''' ಗಳ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಆಗಿದೆ.
 
|-
 
|-
 
|01:15
 
|01:15
| '''t zero''' – ಇದು  'ಇನಿಶಿಯಲ್ ಟೈಮ್' ಆಗಿದೆ.,
+
| '''t zero''', 'ಇನಿಶಿಯಲ್ ಟೈಮ್' ಆಗಿದೆ.  
 
+
 
|-
 
|-
 
|01:17
 
|01:17
|'''t''' – ಇದು ' ಟೈಮ್ ರೇಂಜ್' ಆಗಿದೆ.   
+
|'''t''', 'ಟೈಮ್ ರೇಂಜ್' ಆಗಿದೆ.   
|-
+
|-
 
|01:19
 
|01:19
|ಮತ್ತು '''f'''- ಇದು ಫಂಕ್ಷನ್ ಆಗಿದೆ.  
+
|ಮತ್ತು, '''f''', ಫಂಕ್ಷನ್ ಆಗಿದೆ.  
 
|-
 
|-
 
|01:22
 
|01:22
|ಸರಳ ಪೆಂಡುಲಮ್ ನ ಚಲನೆಯನ್ನು ತೆಗೆದುಕೊಳ್ಳೋಣ.  
+
|ಈಗ ಒಂದು ಸರಳ ಲೋಲಕದ ಚಲನೆಯನ್ನು ನೊಡೋಣ.  
 
|-
 
|-
 
|01:25
 
|01:25
| '''theta t'''(ಟೀಟಾ ಟಿ) –ಇದು ಟೈಮ್ '''t''' ನಲ್ಲಿ, ಪೆಂಡುಲಮ್ ಲಂಬದ ಜತೆ ಮಾಡಿದ ಕೋನವಾಗಿರಲಿ.  
+
| '''theta t'''(ಥೀಟಾ ಟಿ), ಟೈಮ್ '''t''' ಯಲ್ಲಿ, ಲೋಲಕವು ಲಂಬದ ಜತೆ ಮಾಡಿದ ಕೋನವಾಗಿರಲಿ.  
 
|-
 
|-
 
| 01:33
 
| 01:33
| ನಮಗೆ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳನ್ನು ಈ ರೀತಿ ಕೊಡಲಾಗಿದೆ-
+
| ನಮಗೆ 'ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್' ಗಳನ್ನು ಈ ರೀತಿ ಕೊಡಲಾಗಿದೆ -
 
|-
 
|-
 
|01:36
 
|01:36
Line 86: Line 80:
 
|-
 
|-
 
|01:39
 
|01:39
| '''theta dash of zero is equal to zero'''  
+
| '''theta dash of zero is equal to zero'''.
 
|-
 
|-
 
|01:44
 
|01:44
|ಆದಾಗ ಪೆಂಡುಲಮ್ ನ ಸ್ಥಾನವು:  
+
|ಆಗ, ಲೋಲಕದ ಸ್ಥಾನವು ಹೀಗಿರುತ್ತದೆ:  
 
|-
 
|-
 
| 01:47
 
| 01:47
|| '''theta double dash t minus g by l into sin of theta t equal to zero''' ಎಂದಾಗುತ್ತದೆ.
+
|| '''theta double dash t, minus, g by l (ಎಲ್), into, sin of theta t, equal to zero'''.
 
|-
 
|-
 
| 01:56
 
| 01:56
| ಇಲ್ಲಿ '''g equal to 9.8 m per second square''' – ಇದು ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದ ಪಡೆದುಕೊಳ್ಳುವ ವೇಗವಾಗಿದೆ.  
+
| ಇಲ್ಲಿ, '''g equal to 9.8 m per second square''' – ಇದು '''acceleration due to gravity'''  ಆಗಿದೆ.  
 
|-
 
|-
 
|02:03
 
|02:03
|''' l equal to zero point five meter''' – ಇದು ಪೆಂಡುಲಮ್ ನ ಉದ್ದವಾಗಿದೆ.  
+
|''' l (ಎಲ್) equal to zero point five meter''' – ಇದು ಲೋಲಕದ ಉದ್ದವಾಗಿದೆ.  
 
|-
 
|-
 
|02:11
 
|02:11
| '''zero less than equal to t less than equal to five''' ಈ ಟೈಮ್ ರೇಂಜ್ ನಲ್ಲಿ , ಕೊಟ್ಟಿರುವ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳಿಗೆ, ನಾವು '''ODE''' ದ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.  
+
| ನಾವು '''ODE''' ಯನ್ನು, ಕೊಟ್ಟಿರುವ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳಿಗಾಗಿ, '''zero less than equal to t less than equal to five''', ಈ ಟೈಮ್ ರೇಂಜ್ ನಲ್ಲಿ , ಸಾಲ್ವ್ ಮಾಡಬೇಕು.  
 
|-
 
|-
 
| 02:22
 
| 02:22
|ನಾವು ಉತ್ತರವನ್ನು ಪ್ಲೋಟ್ ಕೂಡ ಮಾಡಬೇಕು.  
+
|ನಾವು ಉತ್ತರವನ್ನು ಪ್ಲಾಟ್ (plot) ಕೂಡ ಮಾಡಬೇಕು.  
 
|-
 
|-
 
| 02:25
 
| 02:25
|ಈಗ ಸಮಸ್ಯೆಯ ಉತ್ತರ ಕಂಡುಹಿಡಿಯುವ ಕೋಡ್ ಅನ್ನು ನೋಡುವೆವು.
+
| ಈ ಸಮಸ್ಯೆಯನ್ನು ಸಾಲ್ವ್ ಮಾಡುವುದಕ್ಕಾಗಿ ನಾವು ಕೋಡ್ ಅನ್ನು ನೋಡೋಣ.
 
|-
 
|-
 
| 02:29
 
| 02:29
| 'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ನಲ್ಲಿ '''Pendulum dot sci''' ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
+
| 'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ನಲ್ಲಿ, '''Pendulum dot sci''' ಎಂಬ ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
 
|-
 
|-
 
| 02:34
 
| 02:34
|ಕೋಡ್ ಮೊದಲ ಸಾಲು '''ODE''' ದ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತದೆ.
+
|ಕೋಡ್ ನಲ್ಲಿ ಮೊದಲನೆಯ ಸಾಲು, '''ODE''' ದ 'ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್' ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತದೆ.
 
|-
 
|-
 
|02:40
 
|02:40
|ನಂತರ ಇನಿಶಿಯಲ್ ಟೈಮ್ ವ್ಯಾಲ್ಯುವನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು. ನಂತರ '''time range''' ಅನ್ನು ಕೊಡುವೆವು.
+
|ನಂತರ, 'ಇನಿಶಿಯಲ್ ಟೈಮ್' ವ್ಯಾಲ್ಯು ಅನ್ನು ನಾವು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ ಮತ್ತು '''time range''' ಅನ್ನು ಕೊಡುತ್ತೇವೆ.
 
|-
 
|-
 
|02:46
 
|02:46
| ನಂತರ ನಾವು, ಕೊಟ್ಟಿರುವ ಇಕ್ವೇಷನ್ ಅನ್ನು '''first order ODE''' ಸಿಸ್ಟಮ್ ಆಗಿ ಪರಿವರ್ತಿಸುವೆವು.
+
| ನಂತರ, ಕೊಟ್ಟಿರುವ ಇಕ್ವೇಷನ್ ಅನ್ನು, '''first order ODE''' ಗಳ ಸಿಸ್ಟಮ್ ಆಗಿ ಪರಿವರ್ತಿಸುತ್ತೇವೆ.
 
|-
 
|-
 
| 02:52
 
| 02:52
| '''g''' ಮತ್ತು '''l''' ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಸಬ್ಸ್ಟಿಟ್ಯೂಟ್ ಮಾಡುವೆವು.
+
| '''g''' ಮತ್ತು '''l''' (ಎಲ್) ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಸೇರಿಸುತ್ತೇವೆ.
 
|-
 
|-
 
| 02:56
 
| 02:56
||ಇಲ್ಲಿ ನಾವು, '''y''' ಅನ್ನು ಕೊಟ್ಟಿರುವ ವೇರಿಯೇಬಲ್ '''theta''' ಆಗಿಯೂ ಮತ್ತು '''y dash''' ಅನ್ನು '''theta dash''' ಆಗಿಯೂ ತೆಗೆದುಕೊಳ್ಳುವೆವು.
+
||ಇಲ್ಲಿ ನಾವು, '''y''' ಅನ್ನು, ಕೊಟ್ಟಿರುವ ವೇರಿಯೇಬಲ್ '''theta''' ಎಂದು, ಮತ್ತು '''y dash''' ಅನ್ನು '''theta dash''' ಎಂದು ಪರಿಗಣಿಸುತ್ತೇವೆ.
 
|-
 
|-
 
|03:03
 
|03:03
| ನಂತರ ನಾವು '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು,, '''y zero, t zero, t''' ಮತ್ತು ಫಂಕ್ಷನ್ '''Pendulum'''- ಈ ಆರ್ಗ್ಯುಮೆಂಟ್ ಗಳೊಂದಿಗೆ ಕಾಲ್ ಮಾಡುವೆವು.
+
| ನಂತರ, '''y zero, t zero, t''' ಮತ್ತು ಫಂಕ್ಷನ್ '''Pendulum''' ಎಂಬ ಆರ್ಗ್ಯುಮೆಂಟ್ ಗಳೊಂದಿಗೆ, ನಾವು '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡುತ್ತೇವೆ.
 
|-
 
|-
 
| 03:12
 
| 03:12
| ಈ ಇಕ್ವೇಷನ್ ನ ಉತ್ತರವು ಎರಡು ರೋ ಗಳುಳ್ಳ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಆಗಿರುತ್ತದೆ.  
+
| ಈ ಇಕ್ವೇಷನ್ ನ ಉತ್ತರವು, ಎರಡು 'ರೋ' ಗಳ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಆಗಿರುತ್ತದೆ.  
 
|-
 
|-
 
| 03:17
 
| 03:17
| ಮೊದಲ ರೋ ವು, ಕೊಟ್ಟಿರುವ ಟೈಮ್ ರೇಂಜ್ ನಲ್ಲಿ '''y''' ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.  
+
| ಮೊದಲನೆಯ 'ರೋ', ಕೊಟ್ಟಿರುವ 'ಟೈಮ್ ರೇಂಜ್' ನಲ್ಲಿಯ '''y''' ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.  
 
|-
 
|-
 
| 03:21
 
| 03:21
| ಎರಡನೆಯ ರೋ ವು, ಕೊಟ್ಟಿರುವ ಟೈಮ್ ರೇಂಜ್ ನಲ್ಲಿ  '''y dash ''' ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.  
+
| ಎರಡನೆಯ 'ರೋ', ಕೊಟ್ಟಿರುವ 'ಟೈಮ್ ರೇಂಜ್' ನಲ್ಲಿಯ '''y dash ''' ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.  
 
|-
 
|-
 
|03:27
 
|03:27
|ಹಾಗಾಗಿ ನಾವು, '''time''' ಗೆ ಸಂಬಧಿಸಿದಂತೆ ಎರಡು ರೋಗಳನ್ನೂ ಪ್ಲೋಟ್ ಮಾಡುವೆವು.  
+
|ಹೀಗಾಗಿ ನಾವು, '''time''' ನ ಜೊತೆಗೆ, ಎರಡೂ 'ರೋ' ಗಳನ್ನು ಪ್ಲಾಟ್ (plot) ಮಾಡುತ್ತೇವೆ.  
 
|-
 
|-
 
|03:31
 
|03:31
Line 146: Line 140:
 
|-
 
|-
 
| 03:37
 
| 03:37
|ಈ ಪ್ಲೋಟ್ (ಗ್ರಾಫ್) '''time''' ನೊಂದಿಗೆ ,'''y''' ಮತ್ತು '''y dash''' ಗಳ ವ್ಯಾಲ್ಯುಗಳು ಹೇಗೆ ವ್ಯತ್ಯಯವಾಗುತ್ತದೆ ಎಂದು ತೋರಿಸುತ್ತದೆ.
+
| '''y''' ಮತ್ತು '''y dash''' ಗಳ ವ್ಯಾಲ್ಯುಗಳು, '''time''' ನೊಂದಿಗೆ ಹೇಗೆ ಬದಲಾಗುತ್ತವೆ ಎಂದು ಈ ಪ್ಲಾಟ್, ತೋರಿಸುತ್ತದೆ.
 
|-
 
|-
 
| 03:44
 
| 03:44
Line 152: Line 146:
 
|-
 
|-
 
| 03:47
 
| 03:47
| ನೀವು '''y''' ನ ವ್ಯಾಲ್ಯುವನ್ನು ನೋಡಲು ಬಯಸುವುದಾದರೆ, ಕನ್ಸೋಲ್ ನಲ್ಲಿ  '''y''' ಎಂದು ಟೈಪ್ ಮಾಡಿ '''Enter''' ಅನ್ನು ಒತ್ತಿ.
+
| ನಿಮಗೆ '''y''' ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ನೋಡಬೇಕಾಗಿದ್ದರೆ, ಕನ್ಸೋಲ್ ನಲ್ಲಿ  '''y''' ಎಂದು ಟೈಪ್ ಮಾಡಿ, '''Enter''' ಅನ್ನು ಒತ್ತಿ.
 
|-
 
|-
 
| 03:54
 
| 03:54
|'''y''' ಮತ್ತು '''y dash''' ಗಳ ವ್ಯಾಲ್ಯುಗಳು ಡಿಸ್ಪ್ಲೇ ಆಗುತ್ತದೆ.
+
|'''y''' ಮತ್ತು '''y dash''' ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ತೋರಿಸಲಾಗಿದೆ.
 
|-
 
|-
 
| 03:58
 
| 03:58
|ಈಗ '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸಿ, '''Van der Pol equation'''(ವೇನ್ ಡರ್ ಪೋಲ್ ಇಕ್ವೇಷನ್) ನ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯುವೆವು.  
+
| '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸಿ, ನಾವು '''Van der Pol equation''' ಅನ್ನು (ವ್ಯಾಂಡರ್ ಪೋಲ್ ಇಕ್ವೇಷನ್) ಸಾಲ್ವ್ ಮಾಡೋಣ.
 
|-
 
|-
 
| 04:03
 
| 04:03
|ನಮಗೆ -
+
|ನಮಗೆ ಈ ಸಮೀಕರಣವನ್ನು ಕೊಡಲಾಗಿದೆ.
 
+
 
|-
 
|-
 
| 04:06
 
| 04:06
|'''v double dash of t plus epsilon into v of t square minus one into v dash of t plus v of t equal to zero'''- ಈ ಇಕ್ವೆಷನ್ ಅನ್ನು ಕೊಡಲಾಗಿದೆ.
+
|'''v double dash of t plus epsilon into v of t square minus one into v dash of t plus v of t equal to zero'''-  
 
|-
 
|-
 
| 04:20
 
| 04:20
| '''v of two equal to one''' ಮತ್ತು '''v dash of two equal to zero '''- ಇವು ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳು.
+
| ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳು ಹೀಗಿವೆ-  '''v of two equal to one''' ಮತ್ತು '''v dash of two equal to zero '''.
 
|-
 
|-
 
| 04:28
 
| 04:28
Line 174: Line 167:
 
|-
 
|-
 
|04:32
 
|04:32
| ನಾವು,'''two less than t less than ten''' ಟೈಮ್ ರೇಂಜ್ ನಲ್ಲಿ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು ಮತ್ತು ಉತ್ತರವನ್ನು ಪ್ಲೋಟ್ ಮಾಡಬೇಕು.  
+
| '''two less than t less than ten''', ಈ 'ಟೈಮ್ ರೇಂಜ್' ನಲ್ಲಿ, ನಾವು ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು. ನಂತರ ಉತ್ತರವನ್ನು ಪ್ಲಾಟ್ ಮಾಡಬೇಕು.  
 
|-
 
|-
 
| 04:42
 
| 04:42
|ಈಗ ''Van der Pol equation'' ಗೆ ಕೋಡ್ ಅನ್ನು ನೋಡುವೆವು.
+
| ''Van der Pol equation'' ಗಾಗಿ, ನಾವು ಕೋಡ್ ಅನ್ನು ನೋಡೋಣ.
 
|-
 
|-
 
| 04:47
 
| 04:47
| 'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ಗೆ ಹಿಂದಿರುಗಿ ಮತ್ತು '''Vander pol dot sci''' ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
+
| 'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ಗೆ ಹಿಂದಿರುಗಿ ಮತ್ತು '''Vander pol dot sci''' ಎಂಬ ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
 
|-
 
|-
 
| 04:53
 
| 04:53
| ನಾವು '''ODE''' ಮತ್ತು '''time''' ಗಳ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡಿ, ನಂತರ 'ಟೈಮ್ ರೇಂಜ್' ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು.
+
| ನಾವು '''ODE''' ಮತ್ತು '''time''' ಗಳ 'ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್' ಅನ್ನು ಡಿಫೈನ್ ಮಾಡಿ, ನಂತರ 'ಟೈಮ್ ರೇಂಜ್' ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ.
 
|-
 
|-
 
| 05:01
 
| 05:01
|'ಇನಿಶಿಯಲ್ ಟೈಮ್ ವ್ಯಾಲ್ಯು' ವು 2 ಆಗಿರುವದರಿಂದ ನಾವು ಟೈಮ್ ರೇಂಜ್ ಅನ್ನು ಎರಡರಿಂದ ಪ್ರಾರಂಭಿಸುವೆವು.  
+
|'ಇನಿಶಿಯಲ್ ಟೈಮ್ ವ್ಯಾಲ್ಯು' ಅನ್ನು 2 ಎಂದು ಕೊಟ್ಟಿರುವುದರಿಂದ, ನಾವು 'ಟೈಮ್ ರೇಂಜ್' ಅನ್ನು ಎರಡರಿಂದ ಪ್ರಾರಂಭಿಸುತ್ತೇವೆ.  
 
|-
 
|-
 
| 05:07
 
| 05:07
|ನಂತರ ನಾವು '''Vander pol''' ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು ಮತ್ತು '''first order ODE''' ಗಳ ಸಿಸ್ಟಮ್ ಅನ್ನು ರಚಿಸುವೆವು.
+
|ನಂತರ, ನಾವು '''Vander pol''' ಎಂಬ ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ ಮತ್ತು '''first order ODE''' ಗಳ ಒಂದು ಸಿಸ್ಟಮ್ ಅನ್ನು ರಚಿಸುತ್ತೇವೆ.
 
|-
 
|-
 
| 05:15
 
| 05:15
| '''epsilon''' ದ ವ್ಯಾಲ್ಯುವನ್ನು '''zero point eight nine seven''' ಎಂದು ಬದಲಿಸುವೆವು.
+
| '''epsilon''' ದ ವ್ಯಾಲ್ಯುವನ್ನು, '''zero point eight nine seven''' ಎಂದು ಸೇರಿಸುತ್ತೇವೆ.
 
|-
 
|-
 
| 05:21
 
| 05:21
|ಇಲ್ಲಿ '''y''' ಇದು '''voltage v''' ಯನ್ನು ಸೂಚಿಸುತ್ತದೆ.
+
|ಇಲ್ಲಿ, '''y''', ವೋಲ್ಟೇಜ್ '''v''' ಯನ್ನು ಸೂಚಿಸುತ್ತದೆ.
 
|-
 
|-
 
| 05:25
 
| 05:25
| ನಂತರ ನಾವು, '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡಿ, ಇಕ್ವೇಶನ್ ಗಳ ಸಿಸ್ಟಮ್ ನ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯುವೆವು.  
+
| ನಂತರ, ನಾವು '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡಿ, 'ಇಕ್ವೇಶನ್ ಗಳ ಸಿಸ್ಟಮ್' ಅನ್ನು ಸಾಲ್ವ್ ಮಾಡುತ್ತೇವೆ.  
 
|-
 
|-
 
| 05:30
 
| 05:30
| ಅಂತಿಮವಾಗಿ ನಾವು, '''y''' ಮತ್ತು '''y dash''' ''' versus t''' ಅನ್ನು ಪ್ಲೋಟ್ ಮಾಡುವೆವು.
+
| ಕೊನೆಯದಾಗಿ, ನಾವು '''y''' ಮತ್ತು '''y dash''' ವರ್ಸಸ್ '''t''' ಯನ್ನು ಪ್ಲಾಟ್ ಮಾಡುತ್ತೇವೆ.
 
|-
 
|-
 
| 05:35
 
| 05:35
Line 207: Line 200:
 
|-
 
|-
 
| 05:41
 
| 05:41
| '''voltage versus time''' ಅನ್ನು ತೋರಿಸುವ ಗ್ರಾಫ್ ಅನ್ನು ತೋರಿಸಲಾಗಿದೆ.  
+
| '''voltage versus time''' ನ ಪ್ಲಾಟ್ ಅನ್ನು ತೋರಿಸಲಾಗಿದೆ.  
 
|-
 
|-
 
| 05:45
 
| 05:45
|ಈಗ '''Lorenz system of equations'''(ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್ಸ್) ನತ್ತ ಗಮನ ಹರಿಸುವೆವು.
+
|ನಾವು ಈಗ '''Lorenz system of equations''' (ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್ಸ್) ನತ್ತ ಗಮನ ಹರಿಸೋಣ.
 
|-
 
|-
 
| 05:50
 
| 05:50
| '''Lorenz system of equations''' (ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್ಸ್) ಅನ್ನು :  
+
| '''Lorenz system of equations''' (ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್ಸ್) ಅನ್ನು ಹೀಗೆ ಕೊಡಲಾಗಿದೆ:  
 
|-
 
|-
 
| 05:53
 
| 05:53
 
|'''x one dash equal to sigma into x two minus x one''',
 
|'''x one dash equal to sigma into x two minus x one''',
 
 
|-
 
|-
 
| 06:00
 
| 06:00
 
|'''x two dash equal to one plus r minus x three into x one minus x two''' ಮತ್ತು  
 
|'''x two dash equal to one plus r minus x three into x one minus x two''' ಮತ್ತು  
 
 
|-
 
|-
 
| 06:08
 
| 06:08
|'''x three dash equal to x one into x two minus b into x three''' ಎಂದು ಕೊಡಲಾಗಿದೆ.
+
|'''x three dash equal to x one into x two minus b into x three'''.
 
|-
 
|-
 
| 06:16
 
| 06:16
| '''x one zero equal to minus ten''', '''x two zero equal to ten''' ಮತ್ತು '''x three zero equal to twenty five''' – ಇವು ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳು.
+
| ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳು ಹೀಗಿವೆ: '''x one zero equal to minus ten''', '''x two zero equal to ten''' ಮತ್ತು '''x three zero equal to twenty five'''.
 
|-
 
|-
 
| 06:29
 
| 06:29
| '''sigma''' equal to '''ten,  r'''  equal to '''twenty eight''' ಮತ್ತು '''b''' equal to '''eight by three''' ಆಗಿರಲಿ.
+
| '''sigma''' equal to '''ten''''''r'''  equal to '''twenty eight''' ಮತ್ತು '''b''' equal to '''eight by three''' ಎಂದು ಇರಲಿ.
 
|-
 
|-
 
| 06:37
 
| 06:37
|'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ಗೆ ಹಿಂದಿರುಗಿ ಮತ್ತು '''Lorenz dot sci''' ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
+
|'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ಗೆ ಹಿಂದಿರುಗಿ ಮತ್ತು '''Lorenz dot sci''' ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
 
|-
 
|-
 
| 06:44
 
| 06:44
|'''ODE''' ಗಳ ಇನಿಷಿಯಲ್ ಕಂಡಿಷನ್ ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುವುದರ ಮೂಲಕ ಪ್ರಾರಂಭಿಸುವೆವು.  
+
|ನಾವು '''ODE''' ಗಳ 'ಇನಿಷಿಯಲ್ ಕಂಡಿಷನ್' ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುವುದರ ಮೂಲಕ ಪ್ರಾರಂಭಿಸುತ್ತೇವೆ.  
 
|-
 
|-
 
| 06:48
 
| 06:48
|ಇಲ್ಲಿ ಮೂರು ಬೇರೆ ಬೇರೆ '''ODE''' ಗಳಿರುವುದರಿಂದ ಮೂರು ಇನಿಷಿಯಲ್ ಕಂಡಿಷನ್ ಗಳಿವೆ.  
+
|ಇಲ್ಲಿ, ಮೂರು ವಿಭಿನ್ನ '''ODE''' ಗಳಿರುವುದರಿಂದ, ಮೂರು 'ಇನಿಷಿಯಲ್ ಕಂಡಿಷನ್' ಗಳಿರುತ್ತವೆ.  
 
|-
 
|-
 
| 06:54
 
| 06:54
|ನಂತರ ನಾವು ಇನಿಷಿಯಲ್ ಟೈಮ್ ಕಂಡಿಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು, ಅದಾದ ಮೇಲೆ ಟೈಮ್ ರೇಂಜ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು.
+
|ನಂತರ, ನಾವು 'ಇನಿಷಿಯಲ್ ಟೈಮ್' ಕಂಡಿಷನ್ ಅನ್ನು, ಅಮೇಲೆ 'ಟೈಮ್ ರೇಂಜ್' ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ.
 
|-
 
|-
 
| 07:00
 
| 07:00
|ನಾವು, '''Lorenz''' ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು ಮತ್ತು ನಂತರ  ಕೊಟ್ಟಿರುವ '''sigma, r''' ಮತ್ತು '''b''' ಕಾನ್ಸ್ಟೆಂಟ್ ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು.
+
|ನಾವು, '''Lorenz''' ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ. ನಂತರ  ಕೊಟ್ಟಿರುವ '''sigma, r''' ಮತ್ತು '''b''' ಕಾನ್ಸ್ಟಂಟ್ ಗಳನ್ನು (constant) ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ.
 
|-
 
|-
 
| 07:08
 
| 07:08
|ನಂತರ ನಾವು '''first order ODEs''' ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುವೆವು.
+
|ನಂತರ, ನಾವು '''first order ODE''' ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ.
 
|-
 
|-
 
| 07:12
 
| 07:12
|ನಂತರ ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್ ಗಳ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಲು '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡುವೆವು.
+
|ನಂತರ, 'ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್' ಗಳ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಲು, '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡುತ್ತೇವೆ.
 
|-
 
|-
 
| 07:18
 
| 07:18
|ನಾವು ಉತ್ತರವನ್ನು  '''x''' ಗೆ ಸಮೀಕರಿಸುವೆವು.
+
| ಉತ್ತರವು '''x''' ಗೆ ಸಮ ಇದೆ ಎನ್ನುತ್ತೇವೆ.
 
|-
 
|-
 
| 07:21
 
| 07:21
|ನಂತರ ನಾವು '''x one, x two''' ಮತ್ತು '''x three versus time''' ಅನ್ನು ಪ್ಲೋಟ್ ಮಾಡುವೆವು.
+
|ನಂತರ ನಾವು '''x one, x two''' ಮತ್ತು '''x three''' versus time ನ ಗ್ರಾಫ್ ಅನ್ನು ಪ್ಲಾಟ್ ಮಾಡುತ್ತೇವೆ.
 
|-
 
|-
 
| 07:28
 
| 07:28
Line 263: Line 254:
 
|-
 
|-
 
| 07:33
 
| 07:33
| '''x one, x two''' ಮತ್ತು '''x three versus time''' ಗಳ ಪ್ಲೋಟ್ ಅನ್ನು ನೋಡುವಿರಿ.
+
| '''x one, x two''' ಮತ್ತು '''x three''' versus time ಗಳ ಪ್ಲಾಟ್  ಅನ್ನು ನೋಡುವಿರಿ.
 
|-
 
|-
 
| 07:39
 
| 07:39
Line 269: Line 260:
 
|-
 
|-
 
| 07:41
 
| 07:41
|ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ ನಾವು, ಸೈಲ್ಯಾಬ್ '''ode''' ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸಿ '''ODE''' ಗಳ ಉತ್ತರಗಳನ್ನು ಕಂಡುಹಿಡಿಯುವ ಸೈಲ್ಯಾಬ್ ಕೋಡ್ ಅನ್ನು ಬರೆಯಲು ಕಲಿತಿದ್ದೇವೆ.
+
|ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ ನಾವು, '''ODE''' ಯನ್ನು ಸಾಲ್ವ್ ಮಾಡಲು, 'ಸೈಲ್ಯಾಬ್ ode ಫಂಕ್ಷನ್' ಅನ್ನು ಬಳಸಿ, ಕೋಡ್ ಅನ್ನು ಡೆವಲಪ್ ಮಾಡಲು ಕಲಿತಿದ್ದೇವೆ.
 
|-
 
|-
 
| 07:50
 
| 07:50
|ನಂತರ ನಾವು ಉತ್ತರವನ್ನು ಪ್ಲೋಟ್ ಮಾಡಲು ಕಲಿತಿದ್ದೇವೆ.  
+
|ನಂತರ, ನಾವು ಉತ್ತರವನ್ನು ಪ್ಲಾಟ್ ಮಾಡಲು ಕಲಿತಿದ್ದೇವೆ.  
 
|-
 
|-
 
|07:53
 
|07:53
Line 281: Line 272:
 
|-
 
|-
 
|07:59
 
|07:59
|| ನಿಮಗೆ ಒಳ್ಳೆಯ ಬ್ಯಾಂಡ್ ವಿಡ್ತ್ ಸಿಗದಿದ್ದರೆ, ಇದನ್ನು ಡೌನ್ ಲೋಡ್ ಮಾಡಿ ನೋಡಬಹುದು.
+
|| ನಿಮಗೆ ಒಳ್ಳೆಯ ಬ್ಯಾಂಡ್ವಿಡ್ತ್ ಸಿಗದಿದ್ದರೆ, ಇದನ್ನು ಡೌನ್ಲೋಡ್ ಮಾಡಿ ನೋಡಬಹುದು.
 
|-
 
|-
 
|08:04
 
|08:04
|| ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ತಂಡವು :
+
|| ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ತಂಡವು:
 
|-
 
|-
 
|08:06
 
|08:06
Line 297: Line 288:
 
|-
 
|-
 
|08:20
 
|08:20
| 'ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ಸ್' ಪ್ರೊಜೆಕ್ಟ್, 'ಟಾಕ್ ಟು ಎ ಟೀಚರ್' ಪ್ರೊಜೆಕ್ಟ್ ನ ಒಂದು ಭಾಗವಾಗಿದೆ.
+
| 'ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ಸ್' ಪ್ರೊಜೆಕ್ಟ್, 'ಟಾಕ್ ಟು ಎ ಟೀಚರ್' ಪ್ರೊಜೆಕ್ಟ್ ನ ಒಂದು ಭಾಗವಾಗಿದೆ.
 
|-
 
|-
 
| 08:23
 
| 08:23
| ಇದು ನ್ಯಾಷನಲ್ ಮಿಶನ್ ಆನ್ ಎಜುಕೇಶನ್ , ICT, MHRD, ಭಾರತ ಸರ್ಕಾರದ ಆಧಾರವನ್ನು ಪಡೆದಿದೆ.
+
| ಇದು ನ್ಯಾಷನಲ್ ಮಿಶನ್ ಆನ್ ಎಜುಕೇಶನ್, ICT, MHRD ಮೂಲಕ ಭಾರತ ಸರ್ಕಾರದ ಆಧಾರವನ್ನು ಪಡೆದಿದೆ.
 
|-
 
|-
 
| 08:31
 
| 08:31
 
| ಈ ಮಿಶನ್ ನ ಕುರಿತು ಹೆಚ್ಚಿನ ಮಾಹಿತಿಯು ಈ ಕೆಳಗಿನ ಲಿಂಕ್ ನಲ್ಲಿ ಲಭ್ಯವಿದೆ.
 
| ಈ ಮಿಶನ್ ನ ಕುರಿತು ಹೆಚ್ಚಿನ ಮಾಹಿತಿಯು ಈ ಕೆಳಗಿನ ಲಿಂಕ್ ನಲ್ಲಿ ಲಭ್ಯವಿದೆ.
  http://spoken-tutorial.org/NMEICT-Intro
+
http://spoken-tutorial.org/NMEICT-Intro
 
|-
 
|-
 
| 08:36
 
| 08:36

Latest revision as of 21:52, 11 January 2018

Time Narration
00:01 ಸೈಲ್ಯಾಬ್ ನಲ್ಲಿ, Solving ODEs using Scilab ode function ಎಂಬ ಈ ಸ್ಪೋಕನ್-ಟ್ಯುಟೋರಿಯಲ್ ಗೆ ನಿಮಗೆ ಸ್ವಾಗತ.
00:09 ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ ನೀವು:
00:12 ಸೈಲ್ಯಾಬ್ ode ಫಂಕ್ಷನ್ ಅನ್ನು ಹೇಗೆ ಬಳಸುವುದು,
00:15 ODE ಗಳ ಕೆಲವು ಮಾದರಿಯ ಉದಾಹರಣೆಗಳನ್ನು ಸಾಲ್ವ್ ಮಾಡುವುದು
00:18 ಮತ್ತು ಉತ್ತರವನ್ನು ಪ್ಲಾಟ್ (plot) ಮಾಡುವುದು- ಇವುಗಳ ಬಗ್ಗೆ ಕಲಿಯುವಿರಿ.
00:21 ಇಲ್ಲಿ, ಮಾದರಿಯ ಉದಾಹರಣೆಗಳು :
00:24 ಸರಳ ಲೋಲಕದ (simple pendulum) ಚಲನೆ,
00:26 Van der Pol equation (ವ್ಯಾನ್ ಡರ್ ಪಾಲ್ ಇಕ್ವೇಶನ್)
00:28 ಮತ್ತು Lorenz system (ಲೋರೆಂಝ್ ಸಿಸ್ಟಮ್ ) ಗಳಾಗಿವೆ.
00:30 ಈ ಟ್ಯುಟೋರಿಯಲ್ ಅನ್ನು ರೆಕಾರ್ಡ್ ಮಾಡಲು ನಾನು,
00:33 Ubuntu 12.04 ಆಪರೇಟಿಂಗ್ ಸಿಸ್ಟಮ್ ಅನ್ನು
00:36 Scilab 5.3.3 ಆವೃತ್ತಿಯೊಂದಿಗೆ ಬಳಸುತ್ತಿದ್ದೇನೆ.
00:40 ಈ ಟ್ಯುಟೋರಿಯಲ್ ಅನ್ನು ಅಭ್ಯಾಸ ಮಾಡಲು, ನೀವು ಸೈಲ್ಯಾಬ್ ನ ಬಗ್ಗೆ ಮತ್ತು
00:45 ODE ಗಳನ್ನು ಸಾಲ್ವ್ (solve) ಮಾಡುವುದನ್ನು ತಿಳಿದಿರಬೇಕು.
00:48 ಸೈಲ್ಯಾಬ್ ಅನ್ನು ಕಲಿಯಲು, ದಯವಿಟ್ಟು Spoken Tutorial ವೆಬ್ಸೈಟ್ ನಲ್ಲಿ ಲಭ್ಯವಿರುವ, ಸಂಬಂಧಿತ ಟ್ಯುಟೋರಿಯಲ್ ಗಳನ್ನು ನೋಡಿ.
00:56 ode ಫಂಕ್ಷನ್, 'ಡಿಫರೆನ್ಷಿಯಲ್ ಇಕ್ವೇಶನ್' ಗಳನ್ನು ಸಾಲ್ವ್ ಮಾಡುವ ಒಂದು ಸಾಮಾನ್ಯ ವಿಧಾನವಾಗಿದೆ.
01:01 ಇದರ ಸಿಂಟ್ಯಾಕ್ಸ್ ಹೀಗಿದೆ: y equal to ode within parenthesis y zero, t zero, t ಮತ್ತು f.
01:10 ಇಲ್ಲಿ, y zero, ODE ಗಳ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಆಗಿದೆ.
01:15 t zero, 'ಇನಿಶಿಯಲ್ ಟೈಮ್' ಆಗಿದೆ.
01:17 t, 'ಟೈಮ್ ರೇಂಜ್' ಆಗಿದೆ.
01:19 ಮತ್ತು, f, ಫಂಕ್ಷನ್ ಆಗಿದೆ.
01:22 ಈಗ ಒಂದು ಸರಳ ಲೋಲಕದ ಚಲನೆಯನ್ನು ನೊಡೋಣ.
01:25 theta t(ಥೀಟಾ ಟಿ), ಟೈಮ್ t ಯಲ್ಲಿ, ಲೋಲಕವು ಲಂಬದ ಜತೆ ಮಾಡಿದ ಕೋನವಾಗಿರಲಿ.
01:33 ನಮಗೆ 'ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್' ಗಳನ್ನು ಈ ರೀತಿ ಕೊಡಲಾಗಿದೆ -
01:36 theta of zero is equal to pi by four ಮತ್ತು
01:39 theta dash of zero is equal to zero.
01:44 ಆಗ, ಲೋಲಕದ ಸ್ಥಾನವು ಹೀಗಿರುತ್ತದೆ:
01:47 theta double dash t, minus, g by l (ಎಲ್), into, sin of theta t, equal to zero.
01:56 ಇಲ್ಲಿ, g equal to 9.8 m per second square – ಇದು acceleration due to gravity ಆಗಿದೆ.
02:03 l (ಎಲ್) equal to zero point five meter – ಇದು ಲೋಲಕದ ಉದ್ದವಾಗಿದೆ.
02:11 ನಾವು ODE ಯನ್ನು, ಕೊಟ್ಟಿರುವ ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳಿಗಾಗಿ, zero less than equal to t less than equal to five, ಈ ಟೈಮ್ ರೇಂಜ್ ನಲ್ಲಿ , ಸಾಲ್ವ್ ಮಾಡಬೇಕು.
02:22 ನಾವು ಉತ್ತರವನ್ನು ಪ್ಲಾಟ್ (plot) ಕೂಡ ಮಾಡಬೇಕು.
02:25 ಈ ಸಮಸ್ಯೆಯನ್ನು ಸಾಲ್ವ್ ಮಾಡುವುದಕ್ಕಾಗಿ ನಾವು ಕೋಡ್ ಅನ್ನು ನೋಡೋಣ.
02:29 'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ನಲ್ಲಿ, Pendulum dot sci ಎಂಬ ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
02:34 ಕೋಡ್ ನಲ್ಲಿ ಮೊದಲನೆಯ ಸಾಲು, ODE ದ 'ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್' ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತದೆ.
02:40 ನಂತರ, 'ಇನಿಶಿಯಲ್ ಟೈಮ್' ವ್ಯಾಲ್ಯು ಅನ್ನು ನಾವು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ ಮತ್ತು time range ಅನ್ನು ಕೊಡುತ್ತೇವೆ.
02:46 ನಂತರ, ಕೊಟ್ಟಿರುವ ಇಕ್ವೇಷನ್ ಅನ್ನು, first order ODE ಗಳ ಸಿಸ್ಟಮ್ ಆಗಿ ಪರಿವರ್ತಿಸುತ್ತೇವೆ.
02:52 g ಮತ್ತು l (ಎಲ್) ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಸೇರಿಸುತ್ತೇವೆ.
02:56 ಇಲ್ಲಿ ನಾವು, y ಅನ್ನು, ಕೊಟ್ಟಿರುವ ವೇರಿಯೇಬಲ್ theta ಎಂದು, ಮತ್ತು y dash ಅನ್ನು theta dash ಎಂದು ಪರಿಗಣಿಸುತ್ತೇವೆ.
03:03 ನಂತರ, y zero, t zero, t ಮತ್ತು ಫಂಕ್ಷನ್ Pendulum ಎಂಬ ಆರ್ಗ್ಯುಮೆಂಟ್ ಗಳೊಂದಿಗೆ, ನಾವು ode ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡುತ್ತೇವೆ.
03:12 ಈ ಇಕ್ವೇಷನ್ ನ ಉತ್ತರವು, ಎರಡು 'ರೋ' ಗಳ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಆಗಿರುತ್ತದೆ.
03:17 ಮೊದಲನೆಯ 'ರೋ', ಕೊಟ್ಟಿರುವ 'ಟೈಮ್ ರೇಂಜ್' ನಲ್ಲಿಯ y ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
03:21 ಎರಡನೆಯ 'ರೋ', ಕೊಟ್ಟಿರುವ 'ಟೈಮ್ ರೇಂಜ್' ನಲ್ಲಿಯ y dash ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.
03:27 ಹೀಗಾಗಿ ನಾವು, time ನ ಜೊತೆಗೆ, ಎರಡೂ 'ರೋ' ಗಳನ್ನು ಪ್ಲಾಟ್ (plot) ಮಾಡುತ್ತೇವೆ.
03:31 Pendulum dot sci ಫೈಲ್ ಅನ್ನು ಸೇವ್ ಮಾಡಿ, ಎಕ್ಸಿಕ್ಯೂಟ್ ಮಾಡಿ.
03:37 y ಮತ್ತು y dash ಗಳ ವ್ಯಾಲ್ಯುಗಳು, time ನೊಂದಿಗೆ ಹೇಗೆ ಬದಲಾಗುತ್ತವೆ ಎಂದು ಈ ಪ್ಲಾಟ್, ತೋರಿಸುತ್ತದೆ.
03:44 'ಸೈಲ್ಯಾಬ್ ಕನ್ಸೋಲ್' ಗೆ ಹಿಂದಿರುಗಿ.
03:47 ನಿಮಗೆ y ನ ವ್ಯಾಲ್ಯುಗಳನ್ನು ನೋಡಬೇಕಾಗಿದ್ದರೆ, ಕನ್ಸೋಲ್ ನಲ್ಲಿ y ಎಂದು ಟೈಪ್ ಮಾಡಿ, Enter ಅನ್ನು ಒತ್ತಿ.
03:54 y ಮತ್ತು y dash ಗಳ ವ್ಯಾಲ್ಯುಗಳನ್ನು ತೋರಿಸಲಾಗಿದೆ.
03:58 ode ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸಿ, ನಾವು Van der Pol equation ಅನ್ನು (ವ್ಯಾಂಡರ್ ಪೋಲ್ ಇಕ್ವೇಷನ್) ಸಾಲ್ವ್ ಮಾಡೋಣ.
04:03 ನಮಗೆ ಈ ಸಮೀಕರಣವನ್ನು ಕೊಡಲಾಗಿದೆ.
04:06 v double dash of t plus epsilon into v of t square minus one into v dash of t plus v of t equal to zero-
04:20 ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳು ಹೀಗಿವೆ- v of two equal to one ಮತ್ತು v dash of two equal to zero .
04:28 epsilon is equal to zero point eight nine seven ಎಂದು ಭಾವಿಸಿ.
04:32 two less than t less than ten, ಈ 'ಟೈಮ್ ರೇಂಜ್' ನಲ್ಲಿ, ನಾವು ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು. ನಂತರ ಉತ್ತರವನ್ನು ಪ್ಲಾಟ್ ಮಾಡಬೇಕು.
04:42 Van der Pol equation ಗಾಗಿ, ನಾವು ಕೋಡ್ ಅನ್ನು ನೋಡೋಣ.
04:47 'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ಗೆ ಹಿಂದಿರುಗಿ ಮತ್ತು Vander pol dot sci ಎಂಬ ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
04:53 ನಾವು ODE ಮತ್ತು time ಗಳ 'ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್' ಅನ್ನು ಡಿಫೈನ್ ಮಾಡಿ, ನಂತರ 'ಟೈಮ್ ರೇಂಜ್' ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ.
05:01 'ಇನಿಶಿಯಲ್ ಟೈಮ್ ವ್ಯಾಲ್ಯು' ಅನ್ನು 2 ಎಂದು ಕೊಟ್ಟಿರುವುದರಿಂದ, ನಾವು 'ಟೈಮ್ ರೇಂಜ್' ಅನ್ನು ಎರಡರಿಂದ ಪ್ರಾರಂಭಿಸುತ್ತೇವೆ.
05:07 ನಂತರ, ನಾವು Vander pol ಎಂಬ ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ ಮತ್ತು first order ODE ಗಳ ಒಂದು ಸಿಸ್ಟಮ್ ಅನ್ನು ರಚಿಸುತ್ತೇವೆ.
05:15 epsilon ದ ವ್ಯಾಲ್ಯುವನ್ನು, zero point eight nine seven ಎಂದು ಸೇರಿಸುತ್ತೇವೆ.
05:21 ಇಲ್ಲಿ, y, ವೋಲ್ಟೇಜ್ v ಯನ್ನು ಸೂಚಿಸುತ್ತದೆ.
05:25 ನಂತರ, ನಾವು ode ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡಿ, 'ಇಕ್ವೇಶನ್ ಗಳ ಸಿಸ್ಟಮ್' ಅನ್ನು ಸಾಲ್ವ್ ಮಾಡುತ್ತೇವೆ.
05:30 ಕೊನೆಯದಾಗಿ, ನಾವು y ಮತ್ತು y dash ವರ್ಸಸ್ t ಯನ್ನು ಪ್ಲಾಟ್ ಮಾಡುತ್ತೇವೆ.
05:35 Vander pol dot sci ಫೈಲ್ ಅನ್ನು ಸೇವ್ ಮಾಡಿ, ಎಕ್ಸಿಕ್ಯೂಟ್ ಮಾಡಿ.
05:41 voltage versus time ನ ಪ್ಲಾಟ್ ಅನ್ನು ತೋರಿಸಲಾಗಿದೆ.
05:45 ನಾವು ಈಗ Lorenz system of equations (ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್ಸ್) ನತ್ತ ಗಮನ ಹರಿಸೋಣ.
05:50 Lorenz system of equations (ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್ಸ್) ಅನ್ನು ಹೀಗೆ ಕೊಡಲಾಗಿದೆ:
05:53 x one dash equal to sigma into x two minus x one,
06:00 x two dash equal to one plus r minus x three into x one minus x two ಮತ್ತು
06:08 x three dash equal to x one into x two minus b into x three.
06:16 ಇನಿಶಿಯಲ್ ಕಂಡಿಷನ್ ಗಳು ಹೀಗಿವೆ: x one zero equal to minus ten, x two zero equal to ten ಮತ್ತು x three zero equal to twenty five.
06:29 sigma equal to ten, r equal to twenty eight ಮತ್ತು b equal to eight by three ಎಂದು ಇರಲಿ.
06:37 'ಸೈಲ್ಯಾಬ್ ಎಡಿಟರ್' ಗೆ ಹಿಂದಿರುಗಿ ಮತ್ತು Lorenz dot sci ಫೈಲ್ ಅನ್ನು ಓಪನ್ ಮಾಡಿ.
06:44 ನಾವು ODE ಗಳ 'ಇನಿಷಿಯಲ್ ಕಂಡಿಷನ್' ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುವುದರ ಮೂಲಕ ಪ್ರಾರಂಭಿಸುತ್ತೇವೆ.
06:48 ಇಲ್ಲಿ, ಮೂರು ವಿಭಿನ್ನ ODE ಗಳಿರುವುದರಿಂದ, ಮೂರು 'ಇನಿಷಿಯಲ್ ಕಂಡಿಷನ್' ಗಳಿರುತ್ತವೆ.
06:54 ನಂತರ, ನಾವು 'ಇನಿಷಿಯಲ್ ಟೈಮ್' ಕಂಡಿಷನ್ ಅನ್ನು, ಅಮೇಲೆ 'ಟೈಮ್ ರೇಂಜ್' ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ.
07:00 ನಾವು, Lorenz ಫಂಕ್ಷನ್ ಅನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ. ನಂತರ ಕೊಟ್ಟಿರುವ sigma, r ಮತ್ತು b ಕಾನ್ಸ್ಟಂಟ್ ಗಳನ್ನು (constant) ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ.
07:08 ನಂತರ, ನಾವು first order ODE ಗಳನ್ನು ಡಿಫೈನ್ ಮಾಡುತ್ತೇವೆ.
07:12 ನಂತರ, 'ಲೋರೆಂಜ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಇಕ್ವೇಷನ್' ಗಳ ಉತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಲು, ode ಫಂಕ್ಷನ್ ಅನ್ನು ಕಾಲ್ ಮಾಡುತ್ತೇವೆ.
07:18 ಉತ್ತರವು x ಗೆ ಸಮ ಇದೆ ಎನ್ನುತ್ತೇವೆ.
07:21 ನಂತರ ನಾವು x one, x two ಮತ್ತು x three versus time ನ ಗ್ರಾಫ್ ಅನ್ನು ಪ್ಲಾಟ್ ಮಾಡುತ್ತೇವೆ.
07:28 Lorenz dot sci ಫೈಲ್ ಅನ್ನು ಸೇವ್ ಮಾಡಿ, ಎಕ್ಸಿಕ್ಯೂಟ್ ಮಾಡಿ.
07:33 x one, x two ಮತ್ತು x three versus time ಗಳ ಪ್ಲಾಟ್ ಅನ್ನು ನೋಡುವಿರಿ.
07:39 ಸಂಕ್ಷಿಪ್ತವಾಗಿ,
07:41 ಈ ಟ್ಯುಟೋರಿಯಲ್ ನಲ್ಲಿ ನಾವು, ODE ಯನ್ನು ಸಾಲ್ವ್ ಮಾಡಲು, 'ಸೈಲ್ಯಾಬ್ ode ಫಂಕ್ಷನ್' ಅನ್ನು ಬಳಸಿ, ಕೋಡ್ ಅನ್ನು ಡೆವಲಪ್ ಮಾಡಲು ಕಲಿತಿದ್ದೇವೆ.
07:50 ನಂತರ, ನಾವು ಉತ್ತರವನ್ನು ಪ್ಲಾಟ್ ಮಾಡಲು ಕಲಿತಿದ್ದೇವೆ.
07:53 ಈ ಕೆಳಗಿನ ಲಿಂಕ್ ನಲ್ಲಿ ಲಭ್ಯವಿರುವ ವಿಡಿಯೋ ಅನ್ನು ವೀಕ್ಷಿಸಿ.
07:56 ಇದು ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ಪ್ರಕಲ್ಪದ ಸಾರಾಂಶವಾಗಿದೆ.
07:59 ನಿಮಗೆ ಒಳ್ಳೆಯ ಬ್ಯಾಂಡ್ವಿಡ್ತ್ ಸಿಗದಿದ್ದರೆ, ಇದನ್ನು ಡೌನ್ಲೋಡ್ ಮಾಡಿ ನೋಡಬಹುದು.
08:04 ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ತಂಡವು:
08:06 ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ ಗಳನ್ನು ಬಳಸಿ ಕಾರ್ಯಾಶಾಲೆಗಳನ್ನು ಏರ್ಪಡಿಸುತ್ತದೆ.
08:09 ಪರೀಕ್ಷೆಯಲ್ಲಿ ಉತ್ತೀರ್ಣರಾದವರಿಗೆ ಪ್ರಮಾಣಪತ್ರವನ್ನು ಕೊಡುತ್ತದೆ.
08:13 ಹೆಚ್ಚಿನ ವಿವರಗಳಿಗಾಗಿ, ದಯವಿಟ್ಟು ಈ ಲಿಂಕ್ ಗೆ ಬರೆಯಿರಿ:

conatct@spoken-tutorial.org.

08:20 'ಸ್ಪೋಕನ್ ಟ್ಯುಟೋರಿಯಲ್ಸ್' ಪ್ರೊಜೆಕ್ಟ್, 'ಟಾಕ್ ಟು ಎ ಟೀಚರ್' ಪ್ರೊಜೆಕ್ಟ್ ನ ಒಂದು ಭಾಗವಾಗಿದೆ.
08:23 ಇದು ನ್ಯಾಷನಲ್ ಮಿಶನ್ ಆನ್ ಎಜುಕೇಶನ್, ICT, MHRD ಮೂಲಕ ಭಾರತ ಸರ್ಕಾರದ ಆಧಾರವನ್ನು ಪಡೆದಿದೆ.
08:31 ಈ ಮಿಶನ್ ನ ಕುರಿತು ಹೆಚ್ಚಿನ ಮಾಹಿತಿಯು ಈ ಕೆಳಗಿನ ಲಿಂಕ್ ನಲ್ಲಿ ಲಭ್ಯವಿದೆ.

http://spoken-tutorial.org/NMEICT-Intro

08:36 ಈ ಸ್ಕ್ರಿಪ್ಟ್ ನ ಅನುವಾದಕಿ ಮೈಸೂರಿನಿಂದ ಅಂಜನಾ ಅನಂತನಾಗ್ ಮತ್ತು ಧ್ವನಿ ನವೀನ್ ಭಟ್ಟ, ಉಪ್ಪಿನ ಪಟ್ಟಣ.
08:38 ಧನ್ಯವಾದಗಳು.

Contributors and Content Editors

Anjana310312, Sandhya.np14