Difference between revisions of "Scilab/C4/Linear-equations-Iterative-Methods/Khasi"
From Script | Spoken-Tutorial
(Created page with "{| border=1 || '''Time''' || '''Narration''' |- |00:01 | | Ngi pdiangsngewbha ia phi sha ka spoken tutorial halor ka '''iterative calculations''' da kaba pyndonkam ia ka '''Sc...") |
|||
Line 1: | Line 1: | ||
− | {| | + | {| Border=1 |
− | + | |'''Time''' | |
− | + | |'''Narration''' | |
|- | |- | ||
− | |00:01 | + | | 00:01 |
− | | | + | |Paralok, ngi pdiangsngewbha ia phi sha ka Spoken Tutorial halor ka '''Solving System of Linear Equations using Iterative Methods'''. |
|- | |- | ||
− | | 00: | + | | 00:10 |
− | | | + | | Ha kaba kut jong kane ka jinghikai, phin sa nang ban: |
|- | |- | ||
− | | 00: | + | |00:14 |
− | | | + | |Solve ia ka system jong ki '''linear equations''' da kaba pyndonkam ia ki '''iterative methods''' |
|- | |- | ||
− | | 00: | + | |00:18 |
− | | | + | |Develop '''Scilab code''' ban solve ia ki '''linear equations'''. |
|- | |- | ||
− | |00:22 | + | | 00:22 |
− | | | + | |Ban record ia kane ka jinghikai , nga pyndonkam da ka |
|- | |- | ||
− | | 00: | + | |00:25 |
− | | | + | |'''Ubuntu 12.04''' kum ka operating system |
|- | |- | ||
− | | 00: | + | | 00:28 |
− | | | + | |Bad ka '''Scilab 5.3.3''' version. |
|- | |- | ||
− | |00: | + | | 00:33 |
− | | | + | | Shwa ban pyrshang ia kane ka jinghikai, u nongpule udei ban don ia ki jingtip ba donkam jong ka |
|- | |- | ||
− | | 00: | + | |00:38 |
− | | | + | |'''Scilab''', bad '''solving linear equations'''. |
|- | |- | ||
− | | 00: | + | | 00:42 |
− | | | + | | Na ka bynta ka '''Scilab,''' sngewbha peit ia ki jinghikai ba iadei ba don ha ka '''Spoken Tutorial''' website. |
|- | |- | ||
− | | | + | | 00:50 |
− | | | + | | Ka '''iterative method''' ba nyngkong kaba ngin pule kadei ka '''Jacobi method.''' |
|- | |- | ||
− | | | + | |00:56 |
− | | | | + | |La ai ka '''system of linear equations, with n equations and n unknowns''', |
+ | |- | ||
+ | |01:02 | ||
+ | | Ngi thoh ia ki equations ha kata ka rukom ba ''' x of i k plus one is equal to b i minus summation of a i j x j k from j equal to one to n divided by a i i''' ha kaba ''' i''' udei naduh '''one to n'''. | ||
|- | |- | ||
− | |01: | + | |01:24 |
− | | | + | |Ngi shu shim ia ki values na ka bynta man u '''x of i'''. |
|- | |- | ||
− | |01: | + | |01:27 |
− | | | + | |Nangta ngi bujli ia ki values ha ki equations ba la ioh na ka kyrdan ba hashwa. |
|- | |- | ||
− | | 01: | + | |01:34 |
− | | | + | |Ngi bteng ia ka iteration haduh ba ka solution kan converge. |
|- | |- | ||
− | | 01: | + | | 01:39 |
− | | | + | |To ngin solve ia kane ka nuksa da kaba pyndonkam ia ka '''Jacobi Method'''. |
|- | |- | ||
− | | 01: | + | | 01:44 |
− | | | | + | ||To ngin peit ia u code na ka bynta ka '''Jacobi Method.''' |
|- | |- | ||
− | | 01: | + | | 01:48 |
− | | | | + | || Ngi pyndonkam ia ka '''format''' method ban pynthikna ia ka format jong ki jubab ba la pyni ha ka '''Scilab console.''' |
|- | |- | ||
− | | 01: | + | |01:56 |
− | | | | + | || Hangne '''e''' u kdew ba ka jubab kadei ban dei ha ka '''scientific notation.''' |
|- | |- | ||
− | | 01 | + | |02:01 |
− | | | + | | Bad '''twenty''' ka batai ia ki number jong ki digits ba dei ban pyni. |
|- | |- | ||
− | | | + | |02:06 |
− | | | + | | Nangta ngi pyndonkam ia ka '''input''' function ban ioh ia ki values na ka bynta |
|- | |- | ||
− | | | + | |02:10 |
− | | | + | |'''the matrices coefficient matrix,''' |
|- | |- | ||
− | | | + | |02:12 |
− | | | | + | ||'''right hand side matrix,''' |
|- | |- | ||
− | | 02: | + | |02:14 |
− | | | + | |'''initial values matrix,''' |
|- | |- | ||
− | | 02: | + | | 02:17 |
− | | | + | |'''maximum number of iteration and''' |
|- | |- | ||
− | |02: | + | | 02:19 |
− | | | + | ||'''convergence tolerance'''. |
|- | |- | ||
|02:22 | |02:22 | ||
− | | | | + | ||Nangta ngi pyndonkam ia ka '''size''' function ban peit lada ka '''A matrix''' kadei ka '''square matrix.''' |
|- | |- | ||
− | |02: | + | |02:29 |
− | | | + | | Lada kam dei, ngi pyndonkam ia ka '''error''' function ban pyni ia ka jingbakla. |
|- | |- | ||
− | + | |02:34 | |
− | + | | Nangta ngi peit lada ka '''matrix A'''kadei ka '''diagonally dominant.''' | |
− | + | ||
− | | 02:34 | + | |
− | | | + | |
|- | |- | ||
| 02:40 | | 02:40 | ||
− | | | | + | || Ka bynta ba nyngkong ka khein ia ka sum jong man kawei ka row jong ka '''matrix.''' |
|- | |- | ||
| 02:45 | | 02:45 | ||
− | | | + | | Nangta ka peit lada arsien ka product jong u '''diagonal element''' ka heh ban ia ka sum jong ki elements jong kata ka row. |
|- | |- | ||
− | |02: | + | |02:54 |
− | | | + | | Lada kam dei, ka jingbakla la pyni da kaba pyndonkam ia ka '''error''' function. |
|- | |- | ||
− | | | + | |03:01 |
− | | | + | | Lada ngi define ia ka function '''Jacobi Iteration''' ryngkat bad ki input arguments |
|- | |- | ||
− | | 03: | + | | 03:07 |
− | | | + | | '''A, b , x zero,''' |
|- | |- | ||
− | | 03: | + | | 03:09 |
− | | | + | |'''maximum iteration''' bad '''tolerance level'''. |
|- | |- | ||
− | | 03: | + | | 03:14 |
− | | | + | |Hangne '''x zero''' udei u '''initial values matrix.''' |
|- | |- | ||
− | | 03: | + | | 03:19 |
− | | | + | |Ngi peit lada ka size jong ka '''A matrix''' bad '''initial values matrix''' ki iabiang kawei bad kawei pat. |
|- | |- | ||
− | | 03: | + | |03:28 |
− | + | | Ngi khein ia u value na ka bynta '''x k p one''' bad nangta peit lada ka '''relative error''' ka kham rit ban ia ka '''tolerance level.''' | |
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
| 03:38 | | 03:38 | ||
− | | | + | | Lada ka kham rit ban ia ka '''tolerance level''', ngi '''break''' ia ka iteration bad ka solution la pynphai. |
|- | |- | ||
− | | 03: | + | | 03:45 |
− | | | + | |Khatduh eh ngi '''end''' ia ka function. |
|- | |- | ||
− | | 03: | + | | 03:48 |
− | || | + | || To ngin save bad execute ia ka function. |
|- | |- | ||
− | | 03: | + | |03:51 |
− | | | | + | ||Phai sha ka '''Scilab console.''' |
|- | |- | ||
− | | | + | | 03:54 |
− | | | + | | To ngin pyndap ia ki values ha man kawei pa kawei ka prompt. |
|- | |- | ||
− | | | + | | 03:57 |
− | | | + | | U '''coefficient matrix A is open square bracket two space one semi colon five space seven close square bracket ''' |
|- | |- | ||
− | | 04: | + | |04:08 |
− | | | + | | Nion '''Enter. ''' |
|- | |- | ||
− | | 04: | + | | 04:10 |
− | | | | + | | Nangta ngi type: '''open square bracket eleven semicolon thirteen close square bracket''' |
+ | |- | ||
+ | |04:17 | ||
+ | ||Nion '''Enter.''' | ||
+ | |- | ||
+ | |04:20 | ||
+ | |Ki '''initial values matrix is open square bracket one semi colon one close square bracket''' | ||
|- | |- | ||
| 04:28 | | 04:28 | ||
− | | | + | | Nion '''Enter.''' |
|- | |- | ||
− | | 04: | + | | 04:30 |
− | | | + | |Ka '''maximum number of iterations''' kadei arphewsan. |
|- | |- | ||
− | | 04: | + | | 04:34 |
− | | | + | | Nion '''Enter. ''' |
|- | |- | ||
− | |04:44 | + | | 04:36 |
− | | | Ngi | + | | Ai ba ka '''convergence tolerance level be zero point zero zero zero zero one ''' |
+ | |- | ||
+ | | 04:44 | ||
+ | ||Nion '''Enter.''' | ||
+ | |- | ||
+ | | 04:46 | ||
+ | ||Ngi call ia ka function da kaba type | ||
|- | |- | ||
| 04:48 | | 04:48 | ||
− | | | To ngin mynta | + | ||'''Jacobi Iteration open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis''' |
+ | |- | ||
+ | | 05:04 | ||
+ | |Nion '''Enter. ''' | ||
+ | |- | ||
+ | | 05:06 | ||
+ | |Ki values na ka bynta '''x one''' bad '''x two''' la pyni ha ka '''console.''' | ||
+ | |- | ||
+ | |05:11 | ||
+ | |Ki number jong ki iterations la pyni hangne. | ||
+ | |- | ||
+ | |05:14 | ||
+ | | To ngin pule mynta ia ka '''Gauss Seidel method. ''' | ||
+ | |- | ||
+ | | 05:19 | ||
+ | | La ai ia ka '''system of linear equations''' ryngkat bad '''n equations''' bad ''' n unknowns ''' | ||
+ | |- | ||
+ | |05:26 | ||
+ | ||Ngi thoh biang ia ki equations na ka bynta man kawei pa kawei ka unknown | ||
+ | |- | ||
+ | | 05:29 | ||
+ | | Da kaba subtract ia kiwei pat ki variables ryngkat bad ki coefficients jong ki na u element ba iadei na ka liang ka mon | ||
+ | |- | ||
+ | | 05:37 | ||
+ | | Nangta ngi divide ia kane da u '''coefficient a i i of the''' unknown variable' for that variable.''' | ||
+ | |- | ||
+ | | 05:45 | ||
+ | |Kane la leh na ka bynta man kawei pa laweo ka equation ba la ai. | ||
+ | |- | ||
+ | | 05:49 | ||
+ | |Ha ka '''Jacobi method,''' na ka bynta ka computation jong u '''x of i k plus one,''' man ki element jong '''x of i k''' la pyndonkam lait noh'''x of i k plus one '''. | ||
+ | |- | ||
+ | | 06:03 | ||
+ | | Ha ka '''Gauss Seidel method,''' ngi thoh nalor jong u value '''x of i k''' da '''x of i k plus one'''. | ||
+ | |- | ||
+ | | 06:12 | ||
+ | |To ngin solve ia kane ka nuksa da kaba pyndonkam ia ka '''Gauss Seidel Method'''. | ||
+ | |- | ||
+ | | 06:17 | ||
+ | | To ngin iapeit ia u code na ka bynta ka '''Gauss Seidel Method'''. | ||
+ | |- | ||
+ | | 06:21 | ||
+ | |Ka lain banyngkong ka batai ia ka '''format''' jong ka jubab ba la pyni ha ka '''console'''da kaba pyndonkam ia ka '''format''' function. | ||
+ | |- | ||
+ | | 06:29 | ||
+ | | Nangta ngi pyndonkam ia ka '''input''' function ban ioh ia ki values jong | ||
+ | |- | ||
+ | | 06:32 | ||
+ | | '''coefficient matrix, ''' | ||
+ | |- | ||
+ | | 06:34 | ||
+ | | '''right hand side matrix,''' | ||
+ | |- | ||
+ | | 06:36 | ||
+ | | '''initial values of the variables matrix, ''' | ||
+ | |- | ||
+ | | 06:38 | ||
+ | | '''maximum number of iterations''' bad | ||
+ | |- | ||
+ | | 06:40 | ||
+ | | '''tolerance level'''. | ||
+ | |- | ||
+ | | 06:43 | ||
+ | | Nangta ngi define ia ka function '''Gauss Seidel''' ryngkat bad ki '''input arguments A comma b comma x zero comma max iterations''' bad ka '''tolerance level''' bad ka output argument solution. | ||
+ | |- | ||
+ | | 06:58 | ||
+ | | Ngi peit lada ka '''matrix A is square''' bad ki size jong '''initial vector and matrix A''' ki iabiang lang da kaba pyndonkam ia ka '''size''' bad ka '''length''' function. | ||
+ | |- | ||
+ | | 07:10 | ||
+ | |Nangta ngi sdang ia ki iterations. | ||
+ | |- | ||
+ | | 07:13 | ||
+ | |Ngi equate ia ki '''initial values vector x zero to x k. ''' | ||
+ | |- | ||
+ | | 07:19 | ||
+ | |Ngi shna ia ka '''matrix of zeros''' bad kajuh ka size jong ''' x k''' bad khot ia ka '''x k p one.''' | ||
+ | |- | ||
+ | | 07:28 | ||
+ | |Ngi solve na ka bynta man kawei pa kawei ka equation ban ioh ia u value jong u '''unknown variable''' na ka bynta katei ka equation da kaba pyndonkam ia u '''x k p one. ''' | ||
+ | |- | ||
+ | | 07:38 | ||
+ | |Ha man kawei pa kawei ka iteration, u value jong '''x k p one''' u kylla. | ||
+ | |- | ||
+ | | 07:44 | ||
+ | |Kumjuh ruh, ngi peit lada ka '''relative error''' ka kham rit ban ia ka '''tolerance level''' ba la kdew. | ||
+ | |- | ||
+ | | 07:50 | ||
+ | |Lada ka dei ,ngi '''break''' ia ka iteration. | ||
+ | |- | ||
+ | | 07:54 | ||
+ | |Nangta ngi equate ia u '''x k p one''' sha u ''' variable solution.''' | ||
+ | |- | ||
+ | | 07:59 | ||
+ | |Khatduh eh ngi '''end''' ia ka function. | ||
+ | |- | ||
+ | | 08:02 | ||
+ | |To ngin save bad execute ia ka function. | ||
+ | |- | ||
+ | | 08:06 | ||
+ | |Phai sha ka '''Scilab console'''. | ||
+ | |- | ||
+ | | 08:09 | ||
+ | |Na ka bynta ka prompt banyngkong , ngi type '''matrix A.''' | ||
+ | |- | ||
+ | | 08:12 | ||
+ | |Type '''open square bracket two space one semi colon five space seven close square bracket''' | ||
+ | |- | ||
+ | | 08:21 | ||
+ | |Nion '''Enter'''. Na ka bynta ka prompt babud, | ||
+ | |- | ||
+ | | 08:24 | ||
+ | |type '''open square bracket eleven semi colon thirteen close square bracket''' | ||
+ | |- | ||
+ | | 08:31 | ||
+ | |Nion '''Enter. ''' | ||
+ | |- | ||
+ | | 08:33 | ||
+ | |Ngi ai ia ki values jong '''initial value vector''' da kaba type | ||
+ | |- | ||
+ | | 08:38 | ||
+ | |'''open square bracket one semicolon one close square bracket''' . | ||
+ | |- | ||
+ | | 08:43 | ||
+ | |Nion '''Enter.''' | ||
+ | |- | ||
+ | | 08:45 | ||
+ | |Nangta ngi batai ia u ''' maximum number of iterations''' ba un dei arphewsan. | ||
+ | |- | ||
+ | | 08:50 | ||
+ | |Nion '''Enter.''' | ||
+ | |- | ||
+ | | 08:52 | ||
+ | |To ngin define ia ka '''tolerance level'' ban dei zero point zero zero zero zero one. | ||
+ | |- | ||
+ | | 08:58 | ||
+ | |Nion '''Enter'''. | ||
+ | |- | ||
+ | | 09:01 | ||
+ | |Khatduh eh ngi call ia ka function da kaba type | ||
+ | |- | ||
+ | | 09:04 | ||
+ | |'''G a u s s S e i d e l open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis''' | ||
+ | |- | ||
+ | | 09:24 | ||
+ | |Nion '''Enter'''. | ||
+ | |- | ||
+ | | 09:26 | ||
+ | |Ki values jong '''x one''' bad '''x two''' la pyni. | ||
+ | |- | ||
+ | | 09:30 | ||
+ | |Ki number jong ki iterations ban solve ia kajuh ka problem ki kham duna ban ia ka '''Jacobi method.''' | ||
+ | |- | ||
+ | | 09:37 | ||
+ | |Solve ia kane ka problem da lade da kaba pyndonkam ia ka '''Jacobi''' bad '''Gauss Seidel methods'''. | ||
+ | |- | ||
+ | | 09:43 | ||
+ | |Ha kane ka jinghikai, ngi la pule ban: | ||
+ | |- | ||
+ | | 09:47 | ||
+ | |Develop ia ka '''Scilab code''' na ka bynta ban solve ia ka system jong ki linear equations. | ||
|- | |- | ||
− | | | + | | 09:52 |
− | | | + | |Wad ia u value jong ki '''unknown variables''' jong ka system jong ki '''linear equations'''. |
|- | |- | ||
− | | | + | |09:58 |
− | | | + | | Peit ia ka video ba don ha ka link harum. |
|- | |- | ||
− | | | + | | 10:01 |
− | | | + | | Ka batai kyllum ia ka Spoken Tutorial project. |
|- | |- | ||
− | | | + | |10:04 |
− | | | Lada ia ka | + | ||Lada phim don ia ka bandwidth kaba biang, phi lah ban shu download bad peit ia ka. |
|- | |- | ||
− | | | + | |10:09 |
− | || | + | ||Ka kynhun jong ka Spoken Tutorial Project |
|- | |- | ||
− | | | + | |10:11 |
− | | | | + | ||Ka pynlong ia ki workshops da kaba pyndonkam da ki spoken tutorials |
|- | |- | ||
− | | | + | |10:15 |
− | || | + | ||Ka ai certificates sha kito kiba pass ha ka online test. |
|- | |- | ||
− | | | + | |10:18 |
− | | | | + | ||Na ka bynta kham bun ki jingtip ba bniah, sngewbha thoh sha ka contact@spoken-tutorial.org . |
|- | |- | ||
− | | | + | |10:25 |
− | | | + | |Spoken Tutorial Project kadei shi bynta jong ka Talk to a Teacher project. |
|- | |- | ||
− | | | + | | 10:30 |
− | | | + | | La kyrshan ia ka da ka National Mission on Eduction lyngba ka ICT, MHRD, Sorkar India. |
|- | |- | ||
− | | | + | | 10:37 |
− | | | + | |Kham bun ki jingtip halor kane ka mission kidon ha http://spoken-tutorial.org/NMEICT-Intro. |
|- | |- | ||
− | | | + | | 10:49 |
− | | | + | |Nga i Meboreen na Shillong, nga pynkut ia kane. |
|- | |- | ||
− | | | + | |10:51 |
− | | | + | | Khublei Shibun ia ka jingsnohkti lang jong phi. |
− | + |
Latest revision as of 11:36, 8 September 2017
Time | Narration |
00:01 | Paralok, ngi pdiangsngewbha ia phi sha ka Spoken Tutorial halor ka Solving System of Linear Equations using Iterative Methods. |
00:10 | Ha kaba kut jong kane ka jinghikai, phin sa nang ban: |
00:14 | Solve ia ka system jong ki linear equations da kaba pyndonkam ia ki iterative methods |
00:18 | Develop Scilab code ban solve ia ki linear equations. |
00:22 | Ban record ia kane ka jinghikai , nga pyndonkam da ka |
00:25 | Ubuntu 12.04 kum ka operating system |
00:28 | Bad ka Scilab 5.3.3 version. |
00:33 | Shwa ban pyrshang ia kane ka jinghikai, u nongpule udei ban don ia ki jingtip ba donkam jong ka |
00:38 | Scilab, bad solving linear equations. |
00:42 | Na ka bynta ka Scilab, sngewbha peit ia ki jinghikai ba iadei ba don ha ka Spoken Tutorial website. |
00:50 | Ka iterative method ba nyngkong kaba ngin pule kadei ka Jacobi method. |
00:56 | La ai ka system of linear equations, with n equations and n unknowns, |
01:02 | Ngi thoh ia ki equations ha kata ka rukom ba x of i k plus one is equal to b i minus summation of a i j x j k from j equal to one to n divided by a i i ha kaba i udei naduh one to n. |
01:24 | Ngi shu shim ia ki values na ka bynta man u x of i. |
01:27 | Nangta ngi bujli ia ki values ha ki equations ba la ioh na ka kyrdan ba hashwa. |
01:34 | Ngi bteng ia ka iteration haduh ba ka solution kan converge. |
01:39 | To ngin solve ia kane ka nuksa da kaba pyndonkam ia ka Jacobi Method. |
01:44 | To ngin peit ia u code na ka bynta ka Jacobi Method. |
01:48 | Ngi pyndonkam ia ka format method ban pynthikna ia ka format jong ki jubab ba la pyni ha ka Scilab console. |
01:56 | Hangne e u kdew ba ka jubab kadei ban dei ha ka scientific notation. |
02:01 | Bad twenty ka batai ia ki number jong ki digits ba dei ban pyni. |
02:06 | Nangta ngi pyndonkam ia ka input function ban ioh ia ki values na ka bynta |
02:10 | the matrices coefficient matrix, |
02:12 | right hand side matrix, |
02:14 | initial values matrix, |
02:17 | maximum number of iteration and |
02:19 | convergence tolerance. |
02:22 | Nangta ngi pyndonkam ia ka size function ban peit lada ka A matrix kadei ka square matrix. |
02:29 | Lada kam dei, ngi pyndonkam ia ka error function ban pyni ia ka jingbakla. |
02:34 | Nangta ngi peit lada ka matrix Akadei ka diagonally dominant. |
02:40 | Ka bynta ba nyngkong ka khein ia ka sum jong man kawei ka row jong ka matrix. |
02:45 | Nangta ka peit lada arsien ka product jong u diagonal element ka heh ban ia ka sum jong ki elements jong kata ka row. |
02:54 | Lada kam dei, ka jingbakla la pyni da kaba pyndonkam ia ka error function. |
03:01 | Lada ngi define ia ka function Jacobi Iteration ryngkat bad ki input arguments |
03:07 | A, b , x zero, |
03:09 | maximum iteration bad tolerance level. |
03:14 | Hangne x zero udei u initial values matrix. |
03:19 | Ngi peit lada ka size jong ka A matrix bad initial values matrix ki iabiang kawei bad kawei pat. |
03:28 | Ngi khein ia u value na ka bynta x k p one bad nangta peit lada ka relative error ka kham rit ban ia ka tolerance level. |
03:38 | Lada ka kham rit ban ia ka tolerance level, ngi break ia ka iteration bad ka solution la pynphai. |
03:45 | Khatduh eh ngi end ia ka function. |
03:48 | To ngin save bad execute ia ka function. |
03:51 | Phai sha ka Scilab console. |
03:54 | To ngin pyndap ia ki values ha man kawei pa kawei ka prompt. |
03:57 | U coefficient matrix A is open square bracket two space one semi colon five space seven close square bracket |
04:08 | Nion Enter. |
04:10 | Nangta ngi type: open square bracket eleven semicolon thirteen close square bracket |
04:17 | Nion Enter. |
04:20 | Ki initial values matrix is open square bracket one semi colon one close square bracket |
04:28 | Nion Enter. |
04:30 | Ka maximum number of iterations kadei arphewsan. |
04:34 | Nion Enter. |
04:36 | Ai ba ka convergence tolerance level be zero point zero zero zero zero one |
04:44 | Nion Enter. |
04:46 | Ngi call ia ka function da kaba type |
04:48 | Jacobi Iteration open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis |
05:04 | Nion Enter. |
05:06 | Ki values na ka bynta x one bad x two la pyni ha ka console. |
05:11 | Ki number jong ki iterations la pyni hangne. |
05:14 | To ngin pule mynta ia ka Gauss Seidel method. |
05:19 | La ai ia ka system of linear equations ryngkat bad n equations bad n unknowns |
05:26 | Ngi thoh biang ia ki equations na ka bynta man kawei pa kawei ka unknown |
05:29 | Da kaba subtract ia kiwei pat ki variables ryngkat bad ki coefficients jong ki na u element ba iadei na ka liang ka mon |
05:37 | Nangta ngi divide ia kane da u coefficient a i i of the unknown variable' for that variable. |
05:45 | Kane la leh na ka bynta man kawei pa laweo ka equation ba la ai. |
05:49 | Ha ka Jacobi method, na ka bynta ka computation jong u x of i k plus one, man ki element jong x of i k la pyndonkam lait nohx of i k plus one . |
06:03 | Ha ka Gauss Seidel method, ngi thoh nalor jong u value x of i k da x of i k plus one. |
06:12 | To ngin solve ia kane ka nuksa da kaba pyndonkam ia ka Gauss Seidel Method. |
06:17 | To ngin iapeit ia u code na ka bynta ka Gauss Seidel Method. |
06:21 | Ka lain banyngkong ka batai ia ka format jong ka jubab ba la pyni ha ka consoleda kaba pyndonkam ia ka format function. |
06:29 | Nangta ngi pyndonkam ia ka input function ban ioh ia ki values jong |
06:32 | coefficient matrix, |
06:34 | right hand side matrix, |
06:36 | initial values of the variables matrix, |
06:38 | maximum number of iterations bad |
06:40 | tolerance level. |
06:43 | Nangta ngi define ia ka function Gauss Seidel ryngkat bad ki input arguments A comma b comma x zero comma max iterations bad ka tolerance level bad ka output argument solution. |
06:58 | Ngi peit lada ka matrix A is square bad ki size jong initial vector and matrix A ki iabiang lang da kaba pyndonkam ia ka size bad ka length function. |
07:10 | Nangta ngi sdang ia ki iterations. |
07:13 | Ngi equate ia ki initial values vector x zero to x k. |
07:19 | Ngi shna ia ka matrix of zeros bad kajuh ka size jong x k bad khot ia ka x k p one. |
07:28 | Ngi solve na ka bynta man kawei pa kawei ka equation ban ioh ia u value jong u unknown variable na ka bynta katei ka equation da kaba pyndonkam ia u x k p one. |
07:38 | Ha man kawei pa kawei ka iteration, u value jong x k p one u kylla. |
07:44 | Kumjuh ruh, ngi peit lada ka relative error ka kham rit ban ia ka tolerance level ba la kdew. |
07:50 | Lada ka dei ,ngi break ia ka iteration. |
07:54 | Nangta ngi equate ia u x k p one sha u variable solution. |
07:59 | Khatduh eh ngi end ia ka function. |
08:02 | To ngin save bad execute ia ka function. |
08:06 | Phai sha ka Scilab console. |
08:09 | Na ka bynta ka prompt banyngkong , ngi type matrix A. |
08:12 | Type open square bracket two space one semi colon five space seven close square bracket |
08:21 | Nion Enter. Na ka bynta ka prompt babud, |
08:24 | type open square bracket eleven semi colon thirteen close square bracket |
08:31 | Nion Enter. |
08:33 | Ngi ai ia ki values jong initial value vector da kaba type |
08:38 | open square bracket one semicolon one close square bracket . |
08:43 | Nion Enter. |
08:45 | Nangta ngi batai ia u maximum number of iterations ba un dei arphewsan. |
08:50 | Nion Enter. |
08:52 | To ngin define ia ka 'tolerance level ban dei zero point zero zero zero zero one. |
08:58 | Nion Enter. |
09:01 | Khatduh eh ngi call ia ka function da kaba type |
09:04 | G a u s s S e i d e l open parenthesis A comma b comma x zero comma M a x I t e r comma t o l close parenthesis |
09:24 | Nion Enter. |
09:26 | Ki values jong x one bad x two la pyni. |
09:30 | Ki number jong ki iterations ban solve ia kajuh ka problem ki kham duna ban ia ka Jacobi method. |
09:37 | Solve ia kane ka problem da lade da kaba pyndonkam ia ka Jacobi bad Gauss Seidel methods. |
09:43 | Ha kane ka jinghikai, ngi la pule ban: |
09:47 | Develop ia ka Scilab code na ka bynta ban solve ia ka system jong ki linear equations. |
09:52 | Wad ia u value jong ki unknown variables jong ka system jong ki linear equations. |
09:58 | Peit ia ka video ba don ha ka link harum. |
10:01 | Ka batai kyllum ia ka Spoken Tutorial project. |
10:04 | Lada phim don ia ka bandwidth kaba biang, phi lah ban shu download bad peit ia ka. |
10:09 | Ka kynhun jong ka Spoken Tutorial Project |
10:11 | Ka pynlong ia ki workshops da kaba pyndonkam da ki spoken tutorials |
10:15 | Ka ai certificates sha kito kiba pass ha ka online test. |
10:18 | Na ka bynta kham bun ki jingtip ba bniah, sngewbha thoh sha ka contact@spoken-tutorial.org . |
10:25 | Spoken Tutorial Project kadei shi bynta jong ka Talk to a Teacher project. |
10:30 | La kyrshan ia ka da ka National Mission on Eduction lyngba ka ICT, MHRD, Sorkar India. |
10:37 | Kham bun ki jingtip halor kane ka mission kidon ha http://spoken-tutorial.org/NMEICT-Intro. |
10:49 | Nga i Meboreen na Shillong, nga pynkut ia kane. |
10:51 | Khublei Shibun ia ka jingsnohkti lang jong phi. |