Difference between revisions of "Geogebra/C3/Radian-Measure/Oriya"
From Script | Spoken-Tutorial
PoojaMoolya (Talk | contribs) |
PoojaMoolya (Talk | contribs) |
||
Line 45: | Line 45: | ||
|- | |- | ||
||01:18 | ||01:18 | ||
− | ||ମୁଁ '''Circle with Center and Radius''ଉପରେ କ୍ଲିକ୍ କରୁଛି, ଅରିଜିନ୍ ଠାରେ ସେଣ୍ଟର ରହିବ ଏବଂ ରେଡିୟସ୍ ହେବ 5 ୟୁନିଟ୍ସ | + | ||ମୁଁ '''Circle with Center and Radius'''ଉପରେ କ୍ଲିକ୍ କରୁଛି, ଅରିଜିନ୍ ଠାରେ ସେଣ୍ଟର ରହିବ ଏବଂ ରେଡିୟସ୍ ହେବ 5 ୟୁନିଟ୍ସ |
|- | |- |
Latest revision as of 14:48, 6 April 2017
Time | Narration |
00:01 | ନମସ୍କାର ବନ୍ଧୁଗଣ…ଏହି ଟ୍ୟୁଟୋରିଆଲ୍ ରେ, ଆମେ ‘‘ଜିଓଜେବ୍ରା’’ ବ୍ୟବହାର କରି ‘ରେଡିଆନ୍ସ’’ ଏବଂ ‘‘ସେକ୍ଟର୍ସ’’ ଉପରେ କାମ କରିବା |
00:07 | ଏହି ଟ୍ୟୁଟୋରିଆଲ୍ ର ଲକ୍ଷ୍ୟ ହେଉଛି, ରେଡିଆନ୍ ଉପରେ ଏକ ପାଠ ମାଧ୍ୟମରେ, ଜିଓଜେବ୍ରା ‘‘ଇନପୁଟ୍ ବାର୍’’ ଏବଂ ‘‘କମାଣ୍ଡ’’ ଗୁଡ଼ିକର ବ୍ୟବହାର ସହ ପରିଚିତ କରିବା |
00:15 | ଜିଓଜେବ୍ରା ପ୍ରଥମ କରି ପଢୁଥିବା ପାଠକମାନେ, spoken-tutorial.org ୱେବ୍ ସାଇଟ୍ ରେ ‘‘ଇଣ୍ଟ୍ରୋଡକସନ୍ ଟୁ ଜିଓଜେବ୍ରା’’ ଏବଂ ‘‘ଆଙ୍ଗଲ୍ସ ଏବଂ ଟ୍ରାଇଆଙ୍ଗଲ୍ସ ବେସିକ୍ସ’’ ଦେଖନ୍ତୁ |
00:25 | ଏହି ଟ୍ୟୁଟୋରିଆଲ୍ ରେକର୍ଡ କରିବା ପାଇଁ ମୁଁ ବ୍ୟବହାର କରୁଛି ‘‘Ubuntu Version 10.04 LTS ଓ Geogebra Version 3.2.40 |
00:35 | ଏହି ପାଠରେ: ଆମେ ‘‘ରେଡିଆନ୍ ’’ କ’ଣ ବୁଝିବା, ‘‘ରେଡିଆନ୍’’ କିପରି ଅଙ୍କାଯାଏ ଶିଖିବା |
00:39 | ଏକ ଆର୍କ ର ଦୈର୍ଘ୍ୟ ଏବଂ ଏହା ଅଙ୍କନ କରୁଥିବା କୋଣ ମଧ୍ୟରେ ଥିବା ସମ୍ପର୍କ ବୁଝିବା |
00:44 | ଏବଂ ଏକ ସେକ୍ଟରର କ୍ଷେତ୍ରଫଳ ହିସାବ କରି ଏକ ଆସାଇନମେଣ୍ଟ ପୂରା କରିବା |
00:49 | ଜିଓଜେବ୍ରାରେ ଆମେ Circle with Center and Radius, Circular Arc with Centre between Two Points ଏବଂ Segment between Two Points ଟୁଲ୍ସ ବ୍ୟବହାର କରିବା |
01:00 | ଡ୍ରଇଂ କମାଣ୍ଡଗୁଡ଼ିକ ଇନପୁଟ୍ ବାର୍ ରେ କମାଣ୍ଡ ଟାଇପ କରି ମଧ୍ୟ ବ୍ୟବହାର କରାଯାଇପାରେ |
01:11 | ଜିଓଜେବ୍ରା ୱିଣ୍ଡୋରେ, ବର୍ତ୍ତମାନ ଆମେ 'Circle with Centre and Radius ବ୍ୟବହାର କରି 5 ୟୁନିଟ୍ସ ରେଡିୟସ୍ ଥିବା ଏକ ସର୍କଲ୍ ଆଙ୍କିବା |
01:18 | ମୁଁ Circle with Center and Radiusଉପରେ କ୍ଲିକ୍ କରୁଛି, ଅରିଜିନ୍ ଠାରେ ସେଣ୍ଟର ରହିବ ଏବଂ ରେଡିୟସ୍ ହେବ 5 ୟୁନିଟ୍ସ |
01:28 | ମୁଁ ବର୍ତ୍ତମାନ ସର୍କଲ୍ ଉପରେ ଦୁଇଟି ପଏଣ୍ଟ B ଏବଂ C ଚିହ୍ନଟ କରିବି |
01:36 | ଆମେ ଏହି ଦୁଇଟି ପଏଣ୍ଟ ମଧ୍ୟରେ ଏକ ଆର୍କ ସମ୍ପୂର୍ଣ୍ଣ ଭାବରେ ଅଙ୍କନ କରିବା, ମୁଁ ଆର୍କ କରିବା ପାଇଁ Circular Arc with Centre between Two Points' ଉପରେ କ୍ଲିକ୍ କରିବି |
01:47 | ମୁଁ ସେଣ୍ଟର 'A, B ଏବଂ C ଉପରେ କ୍ଲିକ୍ କରିବି . ଏହା ଏକ ଚାପକୁ ପୂରା କରୁଛି . ଦେଖନ୍ତୁ ଯେ ଚାପର ଦୈର୍ଘ୍ୟ ହେଉଛି d=5.83 ୟୁନିଟ୍ . |
02:00 | ବର୍ତ୍ତମାନ ଏହି ଚାପକୁ ଡିଲିଟ୍ କରିଦେବା ଏବଂ ଏହାକୁ ଅନ୍ୟ ଏକ ଉପାୟରେ ଅଙ୍କନ କରିବା . ଚାପ ଇନପୁଟ୍ ବାର୍ ରେ କମାଣ୍ଡ ଏଣ୍ଟର କରି ମଧ୍ୟ ଅଙ୍କନ କରାଯାଇପାରିବ . |
02:10 | ଏହି ରେକ୍ଟାଙ୍ଗୁଲାର୍ ବକ୍ସ ହେଉଛି ‘‘ଇନପୁଟ୍’’ ବାର୍ . ଇନପୁଟ୍ ବାର୍ ପାଖରେ 3ଟି ଡ୍ରପ୍ ଡାଉନ୍ ବକ୍ସ ରହିଛି . ଏଠାରେ ଆପଣ କେତେକ ଫଙ୍କସନ୍ ପ୍ରବେଶ କରିପାରିବେ, କେତେକ ପାରାମିଟର ଡିଫାଇନ୍ କରିପାରିବେ ଏବଂ ଏହା ହେଉଛି ‘‘କମାଣ୍ଡ’’ କୀ
ଯେଉଁଥିରେ ଆପଣ ଜିଓଜେବ୍ରା ୱିଣ୍ଡୋରେ, ଏଠାରେ ଡ୍ରଇଂ କରିପାରିବେ . . |
02:30 | ମୁଁ ଏଠାରେ ‘‘ଆର୍କ’’ ଟାଇପ୍ କରିବି, ଆପଣ ଦେଖିପାରିବେ ଯେ ଏହା ମୋ ପାଇଁ କମାଣ୍ଡ ପୂରଣ କରିଛି . ମୁଁ ଏହି କମାଣ୍ଡ, ଏଠାରେ ଡ୍ରପ୍ ଡାଉନ୍ ବକ୍ସରୁ ମଧ୍ୟ ଖୋଜି ପାରିବି . |
02:41 | ଆର୍କ ଉପରେ କ୍ଲିକ୍ କରିବି, ଆପଣ ଦେଖିପାରିବେ କମାଣ୍ଡ ଏଠାରେ ସ୍କୋୟାର୍ ବ୍ରାକେଟ୍ ରେ ଦେଖାଯିବ . ଯଦି ମୁଁ ସ୍କୋୟାର ବ୍ରାକେଟଗୁଡ଼ିକର ମଝିରେ କ୍ଲିକ୍ କରିବି ଏବଂ ‘‘ଏଣ୍ଟର’’ ଦାବିବି, କମାଣ୍ଡ ପାଇଁ ସିଣ୍ଟାକ୍ସ ଏଠାରେ ଦେଖାଯିବ . |
02:57 | ଆମେ ଆର୍କ ପାଇଁ ଯେଉଁ ସିନଟାକ୍ସ ବ୍ୟବହାର କରିବା, ତାହା ସର୍କଲ୍ ଏବଂ ଦୁଇଟି ପଏଣ୍ଟ ଡିଫାଇନ୍ କରିବା ପାଇଁ . |
03:04 | ସର୍କଲର ନାଁ ଏବଂ ଯେଉଁ ଦୁଇଟି ପଏଣ୍ଟ ମଧ୍ୟରେ ଆମେ ଚାପ ଚାହୁଁଛୁ, ତାହା ଡିଫାଇନ୍ କରିବାକୁ ପଡ଼ିବ . |
03:10 | ‘‘ଆଲଜେବ୍ରା ଭ୍ୟୁ’’ ରୁ ଆମେ ଦେଖିପାରୁଛୁ ଯେ ସର୍କଲ୍ କହିଲେ ଲୋୟର କେସ୍ ରେ c, ଏବଂ ଯେଉଁ ପଏଣ୍ଟଗୁଡ଼ିକ ମଧ୍ୟରେ ଆମେ ‘‘ଆର୍କ (B,C) ଡ୍ର କରିବାକୁ ଚାହୁଁଛୁ, ଉଭୟ ଅପର କେସ୍ ରେ ଦର୍ଶାଯାଏ . |
03:24 | ତେଣୁ ଆମେ କମାଣ୍ଡ 'Arc[c,B,C] ଟାଇପ୍ କରିବା ଏବଂ ଏଣ୍ଟର ପ୍ରେସ୍ କରିବା . ଜିଓଜେବ୍ରା କେସ୍ ସେନ୍ସିଟିଭ୍ ଅଟେ. |
03:37 | ବର୍ତ୍ତମାନ ଆମେ ଏଠାରେ ଅବଜେକ୍ଟ ପ୍ରପର୍ଟିଜ୍ ରୁ ଜଏଣ୍ଟ କରିଥିବା ଆର୍କର ରଙ୍ଗ ଏବଂ ମୋଟେଇ ବଦଳାଇବା . |
03:46 | ଆମେ କଲରକୁ ଯିବା, ଏହାକୁ ରେଡ୍ ନିରୂପଣ କରିବା . ଷ୍ଟାଇଲ୍ ରୁ ଆମେ ମୋଟେଇ ବଢ଼ାଇବା . |
04:05 | ଦେଖନ୍ତୁ ଆର୍କ ବର୍ତ୍ତମାନ ଗାଢ଼, ଲାଲ୍, ମୋଟା ଦେଖାଯାଉଛି . |
04:11 | ଆମେ ଦୁଇଟି ଲାଇନ୍ ସେଗମେଣ୍ଟ AB ଏବଂ AC ଡ୍ର କରିବା . ଏହାକୁ ପୁଣି ଥରେ ଦୁଇଟି ଉପାୟରେ କରିବା . |
04:17 | Segments between Two Points' ଟୁଲ୍ ଉପରେ କ୍ଲିକ୍ କରିବା ଏବଂ A ଓ B ଉପରେ କ୍ଲିକ୍ କରିବା . ଏହା ସେଗମେଣ୍ଟ 'AB' କୁ ସମ୍ପୂର୍ଣ୍ଣ କରୁଛି . |
04:28 | ଇନପୁଟ୍ ବାର୍ ରୁ ଗୋଟିଏ କମାଣ୍ଡ ଏଣ୍ଟର କରିପାରିବା . ସେଗମେଣ୍ଟ AC' ପୂରା କରିବା ପାଇଁ Segment[A,C] ଟାଇପ କରିବା . |
04:40 | ବର୍ତ୍ତମାନ arc BC ପୂରା ହୋଇଛି, ସେଗମେଣ୍ଟ AB ଏବଂ ACଏବଂ ସେକ୍ଟର BAC ଡ୍ର ହୋଇଛି . |
04:47 | ଆର୍କ BC’ ଦ୍ୱାରା A' ଠାରେ ଅଙ୍କିତ ହୋଇଥିବା କୋଣ ବର୍ତ୍ତମାନ ଡିଫାଇନ୍ କରିବା . ଏହି କୋଣକୁ α(ଆଲ୍ଫା)କହିବା . ଡ୍ରପ୍ ଡାଉନ୍ ବକ୍ସରୁ ଏହାକୁ ଚୟନ କରିବା . |
04:58 | ଆଙ୍ଗଲ୍ କମାଣ୍ଡ ହେଉଛି angle[B,A,C]. |
05:10 | ଜିଓଜେବ୍ରାରେ ମଧ୍ୟ ଆମେ କୋଣ ନାମକରଣର ଷ୍ଟାଣ୍ଡାର୍ଡ ନିୟମ ଅନୁସରଣ କରିବା . |
05:18 | ଏଠାରେ କେନ୍ଦ୍ରରେ ଅଙ୍କିତ ହୋଇଥିବା କୋଣ αର ମୂଲ୍ୟ ହେଉଛି 66.78 ଡିଗ୍ରୀ . |
05:30 | ଏକ ରେଡିୟାନ୍ ହେଉଛି କେନ୍ଦ୍ରରେ ଅଙ୍କିତ କୋଣ, ଯେତେବେଳେ ସେହି କୋଣ ଅଙ୍କନ କରିଥିବା ଚାପର ଦୈର୍ଘ୍ୟ ସର୍କଲର ରେଡିୟସ୍ ସହ ସମାନ ହୋଇଥାଏ . |
05:40 | ଯଦି ଆମେ ‘‘ଅପସନ୍ସ’’କୁ ଯାଇ ‘‘ଆଙ୍ଗଲ୍ ୟୁନିଟ୍’’କୁ ରେଡିଆନ୍ ରେ ଡିଫାଇନ୍ କରୁ . |
05:49 | ଦେଖିବା ଯେ α ର ଭାଲ୍ୟୁ 1.17 ରେଡିଆନ୍ସ ରହିଛି. ଏହାକୁ 1 ରାଡ୍ ର ନିକଟବର୍ତ୍ତୀ କରିବା ପାଇଁ ଆମେ ‘‘ଆର୍କ’’ର ଦୈର୍ଘ୍ୟ ବଦଳାଇବା . |
06:04 | ଦେଖନ୍ତୁ ଯେ, ‘‘ଆର୍କ’’ର ଦୈର୍ଘ୍ୟ d=5 ୟୁନିଟ୍ସ ଏବଂ କେନ୍ଦ୍ରରେ ଅଙ୍କିତ କୋଣ 'α'ର ଭାଲ୍ୟୁ ହେଉଛି 1 ରେଡିଆନ୍ . |
06:17 | ଆମେ 1 ରାଡ୍ ଡିଫାଇନ୍ କରି, ଦେଖିଲେ ରେଡିୟସ୍ ସହ ଆର୍କର ଦୈର୍ଘ୍ୟ ସମାନ ହେଲେ ଏହି କୋଣ ଅଙ୍କିତ ହେଉଛି . |
06:29 | ଡିଗ୍ରୀରେ 1 ରାଡ୍ ର ଭାଲ୍ୟୁ କେତେ? ମୁଁ ଏହାକୁ ଅଳ୍ପ ଜୁମ୍ କଲି . |
06:41 | ଏହି ଆର୍କର ଦୈର୍ଘ୍ୟ ଏକ ସେମି ସର୍କଲର ଦୈର୍ଘ୍ୟ ସହ ସମାନ କରିବା . ଆର୍କର ଦୈର୍ଘ୍ୟ [π a] ଯେଉଁଠି ‘'a' ହେଉଛି ସର୍କଲ୍ ର ରେଡିୟସ୍ . |
06:53 | ତା ପୂର୍ବରୁ, ମୁଁ ପୁଣି ଥରେ ଆଙ୍ଗଲ୍ ୟୁନିଟ୍ ‘‘ଡିଗ୍ରୀ’’ ବୋଲି ଡିଫାଇନ୍ କରିବି କାରଣ ଆମେ 1 ରାଡ୍ ର ଭାଲ୍ୟୁ ଡିଗ୍ରୀରେ ଚାହୁଁ . |
07:03 | ଆମେ ଦେଖିଲେ ଯେ, ଆର୍କର ଦୈର୍ଘ୍ୟ ଯେତେବେଳେ [π a] ଯାହା କି ଗୋଟିଏ ସେମି ସର୍କଲ୍, α ର ଭାଲ୍ୟୁ ହେଉଛି 180.21 ଡିଗ୍ରୀ . |
07:13 | ଯଦି ମୁଁ ଏହି ସର୍କଲ୍ ପୂରା କରୁଛି, ଦେଖନ୍ତୁ, α କୋଣ ପ୍ରାୟ 360 ଡିଗ୍ରୀ ହେବ . |
07:27 | ତେଣୁ ଆମେ ଏହି ଦୁଇଟିରୁ ଦେଖିଲେ, 1 ରାଡ୍ ର ମୂଲ୍ୟ 57.32 ଡିଗ୍ରୀ ହେବ . |
07:35 | ଆମେ ‘‘ଆର୍କ’’ ଦୈର୍ଘ୍ୟ, ରେଡିୟସ୍ ଏବଂ ଅଙ୍କିତ କୋଣ ମଧ୍ୟରେ ସମ୍ପର୍କ ବୁଝିବା . ସେଥିପାଇଁ, ଆମେ α/57.32 ଦ୍ୱାରା ବିଭକ୍ତ କରି ଅନ୍ୟ ଏକ କୋଣ 'θ(ଥିଟା)ର ମୂଲ୍ୟ ରେଡିଆନ୍ ରେ ନିରୂପଣ କରିବା . |
08:03 | ଦେଖନ୍ତୁ ଯେ θର ମୂଲ୍ୟ ପ୍ରକୃତରେ ରେଡିଆନରେ କୋଣର ମୂଲ୍ୟ . ତେବେ, ଏଠାରେ ଫର୍ମାଟିଂ ସମସ୍ୟା ପାଇଁ ଏହା ଏକ ଡିଗ୍ରୀ ସିମ୍ବଲ୍ ସହ ଦେଖାଯାଉଛି . |
08:15 | ଆମେ θକୁ ଏହିଭଳି ବ୍ୟବହାର କରିବା ଏବଂ ରେଡିଆନ୍ ରେ ଆଙ୍ଗଲ୍ ୟୁନିଟ୍ ବଦଳାଇବା ନାହିଁ, କାରଣ ଆମେ ଫର୍ମୁଲା ଆର୍କର ଦୈର୍ଘ୍ୟ ଏବଂ ଅଙ୍କିତ କୋଣ ବ୍ୟବହାର କରି ଏକ ଫର୍ମୁଲା ଦର୍ଶାଇବା ପାଇଁ ଚାହୁଁଛୁ . |
08:29 | ଫର୍ମାଟିଂ ସମସ୍ୟା ପାଇଁ ଏହି ଫର୍ମୁଲା କେବଳ ଏହିଭଳି ଭାବରେ ବୁଝାଯାଇ ପାରିବ . |
08:36 | ବର୍ତ୍ତମାନ, ଫର୍ମୁଲା ଇଣ୍ଟ୍ରୋଡ୍ୟୁସ୍ କରିବା ପାଇଁ ଜିଓଜେବ୍ରା ୱିଣ୍ଡୋରେ ଟେକ୍ସଟ ଇନସର୍ଟ କରନ୍ତୁ ଏହି ଫର୍ମୁଲା ଆର୍କର ଦୈର୍ଘ୍ୟ ସହ ଅଙ୍କିତ କୋଣର ସମ୍ପର୍କ ସ୍ଥାପନ କରୁଛି . |
08:52 | ଟେକ୍ସଟ କିପରି ଲେଖିବେ, ତାହାର ପରିଚୟ ପାଇଁ Angles and Triangles Basics ଟ୍ୟୁଟୋରିଆଲ୍ ଦେଖନ୍ତୁ. |
09:34 | ବର୍ତ୍ତମାନ, ଦେଖନ୍ତୁ ଯେ, ଯେତେବେଳେ ମୁଁ ଆର୍କର ଦୈର୍ଘ୍ୟ ବଦଳାଉଛି, θର ମୂଲ୍ୟ ବଦଳୁଛି ଏବଂ ଆର୍କର ଦୈର୍ଘ୍ୟ ଏବଂ ଅଙ୍କିତ କୋଣ ମଧ୍ୟରେ ସମ୍ପର୍କ d=r.θ ହେଉଛି, ଯେଉଁଠାରେ d ଆର୍କର ଦୈର୍ଘ୍ୟ, r ସର୍କଲ୍ ର ରେଡିୟସ୍ ଏବଂ θ ହେଉଛି କେନ୍ଦ୍ରରେ ଅଙ୍କିତ କୋଣ ଏବଂ ଏହା ରେଡିଆନ୍ ରେ ପ୍ରକାଶ କରାଯାଇଛି . |
09:58 | ଆମେ ଯାହା ଶିଖିଲେ, ତାହା ପୁଣି ଥରେ ବୁଝିବା ପାଇଁ ଏକ ଆସାଇନମେଣ୍ଟ ଉପରେ ନଜର ପକାଇବା . |
10:10 | ଯାହା ଶିଖିଛନ୍ତି ତାହା ବ୍ୟବହାର କରି, ଦେଖାନ୍ତୁ ଯେ କିପରି ଏକ ସେକ୍ଟରର କ୍ଷେତ୍ରଫଳ Area = ½ a^2 θ ହେବ . |
10:18 | ଯେଉଁଠାରେ a' ରେଡିୟସ୍, θ ରେଡିଆନ୍ ରେ, କେନ୍ଦ୍ରରେ ଅଙ୍କିତ କୋଣ ଏବଂ ଫର୍ମୁଲା ହେଉଛି Area = ½ a^2 θ . |
10:30 | ଏହି ଆସାଇନମେଣ୍ଟ ସାରିବା ପାଇଁ ଏକ ଛୋଟ ସୂଚନା ହେଉଛି ଚତୁର୍ଭୁଜ ସହ ସେକ୍ଟରର କ୍ଷେତ୍ରଫଳ ତୁଳନା କରିବା . |
10:40 | ଡ୍ର କରାଯିବା ପରେ ଆସାଇନମେଣ୍ଟ ଏହିଭଳି ଦେଖାଯିବ . ଆମେ ଚତୁର୍ଭୁଜ ସହ ତୁଳନା କରି ସେକ୍ଟରର କ୍ଷେତ୍ରଫଳ ଗଣନା କରିବାକୁ ଚାହୁଁଛୁ . |
10:55 | ମୁଁ ସ୍ପୋକନ୍ ଟ୍ୟୁଟୋରିଆଲର ଆଭାର ବ୍ୟକ୍ତ କରିବାକୁ ଚାହୁଁଛି, ଯାହା ହେଉଛି ଟକ୍ ଟୁ ଏ ଟିଚର୍ ପ୍ରୋଜେକ୍ଟର ଏକ ଅଂଶ ଏବଂ ଭାରତ ସରକାରଙ୍କ MHRDର ICT ମାଧ୍ୟମରେ ରାଷ୍ଟ୍ରୀୟ ସାକ୍ଷରତା ମିଶନ୍ ଦ୍ୱାରା ସମର୍ଥିତ |
11:06 | ଏହି ମିଶନ୍ ଉପରେ ଅଧିକ ବିବରଣୀ ନିମ୍ନ ଲିଙ୍କ୍ ରେ ଉପଲବ୍ଧ (spoken-tutorial.org/NMEICT-Intro). ଆଇଆଇଟି ବମ୍ୱେ ତରଫରୁ ମୁଁ ପ୍ରଦୀପ ଚନ୍ଦ୍ର ମହାପାତ୍ର ଆପଣଙ୍କଠାରୁ ବିଦାୟ ନେଉଛି ଆମ ସହିତ ଜଡ଼ିତ ହୋଇଥିବାରୁ ଧନ୍ୟବାଦ |