Difference between revisions of "Scilab/C4/ODE-Euler-methods/English-timed"

From Script | Spoken-Tutorial
Jump to: navigation, search
(Created page with '{| Border=1 || Time || Narration |- | 00.01 |Dear Friends, |- | 00.02 | Welcome to the Spoken Tutorial on '''“Solving ODEs using Euler Methods” ''' |- | 00.09 | At the …')
 
Line 1: Line 1:
 
{| Border=1
 
{| Border=1
  
|| Time
+
|'''Time'''
 
+
|'''Narration'''
|| Narration
+
  
 
|-
 
|-
| 00.01
+
| 00:01
 
|Dear Friends,  
 
|Dear Friends,  
  
 
|-
 
|-
| 00.02
+
| 00:02
 
| Welcome to the Spoken Tutorial on '''“Solving ODEs using Euler Methods” '''
 
| Welcome to the Spoken Tutorial on '''“Solving ODEs using Euler Methods” '''
  
 
|-
 
|-
| 00.09
+
| 00:09
 
| At the end of this tutorial, you will learn how to:   
 
| At the end of this tutorial, you will learn how to:   
  
 
|-
 
|-
|00.12
+
|00:12
 
|Solve '''ODEs''' using '''Euler''' and '''Modified Euler methods''' in '''Scilab'''
 
|Solve '''ODEs''' using '''Euler''' and '''Modified Euler methods''' in '''Scilab'''
  
 
|-
 
|-
|00.18
+
|00:18
 
|Develop '''Scilab''' code to solve '''ODEs'''
 
|Develop '''Scilab''' code to solve '''ODEs'''
  
 
|-
 
|-
| 00.22
+
| 00:22
 
|To record this tutorial, I am using  
 
|To record this tutorial, I am using  
  
 
|-
 
|-
|00.25
+
|00:25
 
|'''Ubuntu 12.04''' as the operating system  
 
|'''Ubuntu 12.04''' as the operating system  
  
  
 
|-
 
|-
| 00.28
+
| 00:28
 
|and '''Scilab 5.3.3''' version  
 
|and '''Scilab 5.3.3''' version  
  
 
|-
 
|-
| 00.32
+
| 00:32
 
| To practise this tutorial, a learner  
 
| To practise this tutorial, a learner  
  
 
|-
 
|-
|00.34
+
|00:34
 
|should have basic knowledge of '''Scilab'''  
 
|should have basic knowledge of '''Scilab'''  
  
 
|-
 
|-
|00.37
+
|00:37
 
|and should know how to solve '''ODEs.'''
 
|and should know how to solve '''ODEs.'''
  
 
|-
 
|-
| 00.40
+
| 00:40
 
| To learn '''Scilab,''' please refer to the relevant tutorials available on the '''Spoken Tutorial''' website.  
 
| To learn '''Scilab,''' please refer to the relevant tutorials available on the '''Spoken Tutorial''' website.  
  
 
|-
 
|-
| 00.48
+
| 00:48
 
| In '''Euler method,''' we get an accurately approximate solution of the '''ODE.'''  
 
| In '''Euler method,''' we get an accurately approximate solution of the '''ODE.'''  
  
 
|-
 
|-
|00.55
+
|00:55
 
|It is used to solve initial value problems where initial values of the '''differential equation''' are given.  
 
|It is used to solve initial value problems where initial values of the '''differential equation''' are given.  
  
 
|-
 
|-
|01.03
+
|01:03
 
| It can be used to solve '''continuous functions.'''  
 
| It can be used to solve '''continuous functions.'''  
  
 
|-
 
|-
  
|01.08
+
|01:08
  
 
|Let us solve an example using '''Euler method.'''
 
|Let us solve an example using '''Euler method.'''
Line 74: Line 73:
 
|-
 
|-
  
|01.12
+
|01:12
 
|We are given an initial value problem -  
 
|We are given an initial value problem -  
  
 
|-
 
|-
  
| 01.15
+
| 01:15
  
 
|'''y dash is equal to minus two t minus y.'''  
 
|'''y dash is equal to minus two t minus y.'''  
Line 86: Line 85:
 
|-
 
|-
  
| 01.20
+
| 01:20
 
||The initial value of y is given as '''minus one'''  
 
||The initial value of y is given as '''minus one'''  
  
 
|-
 
|-
  
|01.25
+
|01:25
  
 
|| and the '''step length''' is given as '''zero point one.'''  
 
|| and the '''step length''' is given as '''zero point one.'''  
Line 98: Line 97:
 
|-
 
|-
  
|01.29
+
|01:29
  
 
| We have to find the value of '''y''' at time '''t equal to zero point five.'''  
 
| We have to find the value of '''y''' at time '''t equal to zero point five.'''  
  
 
|-
 
|-
|01.36
+
|01:36
 
|Let us look at the code for '''Euler method.'''  
 
|Let us look at the code for '''Euler method.'''  
  
Line 109: Line 108:
 
|-
 
|-
  
|01.39
+
|01:39
  
 
|Open '''Euler underscore o d e dot sci''' on '''Scilab editor.'''  
 
|Open '''Euler underscore o d e dot sci''' on '''Scilab editor.'''  
Line 115: Line 114:
 
|-
 
|-
  
|01.47
+
|01:47
  
  
Line 122: Line 121:
  
 
|-
 
|-
|01.58
+
|01:58
 
|'where '''f''' denotes the function to be solved,  
 
|'where '''f''' denotes the function to be solved,  
  
Line 128: Line 127:
 
|-
 
|-
  
| 02.01
+
| 02:01
 
|'''t init''' is the initial value of time '''t''',  
 
|'''t init''' is the initial value of time '''t''',  
  
 
|-
 
|-
  
|02.05
+
|02:05
  
 
||'''y init'''  is the initial value of '''y'''
 
||'''y init'''  is the initial value of '''y'''
 
|-
 
|-
  
|02.09
+
|02:09
  
 
| '''h''' is the '''step length,''' and '''n''' is the number of '''iterations.'''  
 
| '''h''' is the '''step length,''' and '''n''' is the number of '''iterations.'''  
Line 144: Line 143:
 
|-
 
|-
  
|02.14
+
|02:14
  
 
| Then we initialize the values of '''t''' and '''y to vectors of zeros. '''
 
| Then we initialize the values of '''t''' and '''y to vectors of zeros. '''
 
|-
 
|-
  
| 02.21
+
| 02:21
  
 
|| We place the initial values of '''t''' and '''y''' in '''t of one''' and '''y of one''' respectively.  
 
|| We place the initial values of '''t''' and '''y''' in '''t of one''' and '''y of one''' respectively.  
  
 
|-
 
|-
| 02.29
+
| 02:29
 
| Then we '''iterate''' from '''one to N''' to find the value of '''y'''.  
 
| Then we '''iterate''' from '''one to N''' to find the value of '''y'''.  
  
 
|-
 
|-
|02.33
+
|02:33
 
| Here we apply '''Euler method''' to find the value of '''y. '''  
 
| Here we apply '''Euler method''' to find the value of '''y. '''  
  
 
|-
 
|-
|02.39
+
|02:39
 
| Finally we end the '''function. '''
 
| Finally we end the '''function. '''
  
 
|-
 
|-
| 02.42
+
| 02:42
 
|Save and execute the file '''Euler underscore o d e dot sci'''
 
|Save and execute the file '''Euler underscore o d e dot sci'''
 
   
 
   
  
 
|-
 
|-
| 02.49
+
| 02:49
 
|Switch to '''Scilab console''' to solve the example problem.  
 
|Switch to '''Scilab console''' to solve the example problem.  
  
Line 177: Line 176:
  
 
|-
 
|-
| 02.54
+
| 02:54
 
|We define the ''' function ''' by typing  
 
|We define the ''' function ''' by typing  
  
  
 
|-
 
|-
| 02.56
+
| 02:56
 
|'''d e f f open paranthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to open paranthesis minus two asterisk t close paranthesis minus y close single quote close paranthesis '''
 
|'''d e f f open paranthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to open paranthesis minus two asterisk t close paranthesis minus y close single quote close paranthesis '''
  
  
 
|-
 
|-
|03.26
+
|03:26
 
|Press '''Enter. '''
 
|Press '''Enter. '''
  
 
|-
 
|-
|03.28
+
|03:28
 
| Then type '''t init is equal to zero. '''
 
| Then type '''t init is equal to zero. '''
  
Line 197: Line 196:
 
|-
 
|-
  
| 03.31
+
| 03:31
  
 
|Press '''Enter. '''
 
|Press '''Enter. '''
Line 206: Line 205:
 
|-
 
|-
  
| 03.33
+
| 03:33
 
||Type '''y init is equal to minus one.  '''
 
||Type '''y init is equal to minus one.  '''
 
'
 
'
Line 213: Line 212:
 
|-
 
|-
  
|03.38
+
|03:38
  
 
||Press '''Enter '''
 
||Press '''Enter '''
Line 220: Line 219:
 
|-
 
|-
  
| 03.40
+
| 03:40
 
| Type '''step length h is equal to zero point one. '''
 
| Type '''step length h is equal to zero point one. '''
  
Line 227: Line 226:
 
|-
 
|-
  
| 03.44
+
| 03:44
  
 
| Press '''Enter'''
 
| Press '''Enter'''
Line 234: Line 233:
 
|-
 
|-
  
| 03.46
+
| 03:46
  
 
| The '''step length is zero point one,''' and we have to find the value of '''y''' at '''zero point five.'''
 
| The '''step length is zero point one,''' and we have to find the value of '''y''' at '''zero point five.'''
Line 241: Line 240:
 
|-
 
|-
  
|03.53
+
|03:53
  
 
||So, the number of '''iterations''' should be '''five.'''  
 
||So, the number of '''iterations''' should be '''five.'''  
Line 248: Line 247:
 
|-
 
|-
  
|03.59
+
|03:59
  
 
|At each '''iteration,'''  the value of '''t''' will be increased by '''zero point one.'''  
 
|At each '''iteration,'''  the value of '''t''' will be increased by '''zero point one.'''  
Line 255: Line 254:
 
|-
 
|-
  
| 04.05
+
| 04:05
  
 
| So type '''capital N is equal to five.'''  
 
| So type '''capital N is equal to five.'''  
Line 264: Line 263:
 
|-
 
|-
  
| 04.09
+
| 04:09
  
 
|And press '''Enter.'''
 
|And press '''Enter.'''
Line 271: Line 270:
 
|-
 
|-
  
| 04.11
+
| 04:11
  
 
| To '''call''' the '''function,''' type  
 
| To '''call''' the '''function,''' type  
Line 277: Line 276:
 
|-
 
|-
  
| 04.14
+
| 04:14
  
 
| '''open square bracket t comma y close square bracket equal to Euler underscore o d e open paranthesis f comma t init comma y init comma h comma capital N close paranthesis '''
 
| '''open square bracket t comma y close square bracket equal to Euler underscore o d e open paranthesis f comma t init comma y init comma h comma capital N close paranthesis '''
Line 283: Line 282:
 
|-
 
|-
  
| 04.33
+
| 04:33
  
 
||Press '''Enter.'''  
 
||Press '''Enter.'''  
Line 290: Line 289:
 
|-
 
|-
  
| 04.35
+
| 04:35
  
 
||The value of '''y at t equal to zero point five''' is shown.  
 
||The value of '''y at t equal to zero point five''' is shown.  
Line 296: Line 295:
 
|-
 
|-
  
| 04.41
+
| 04:41
  
 
||Now let us look at '''Modified Euler method. '''
 
||Now let us look at '''Modified Euler method. '''
Line 302: Line 301:
 
|-
 
|-
  
| 04.45
+
| 04:45
  
 
|It is a '''second order method''' and is a '''stable two step method. '''
 
|It is a '''second order method''' and is a '''stable two step method. '''
Line 309: Line 308:
 
|-
 
|-
  
| 04.51
+
| 04:51
  
 
|We find the '''average''' of the '''function''' at the beginning and end of '''time step.'''  
 
|We find the '''average''' of the '''function''' at the beginning and end of '''time step.'''  
Line 316: Line 315:
 
|-
 
|-
  
|04.56
+
|04:56
  
 
|Let us solve this example using '''Modified Euler method.'''  
 
|Let us solve this example using '''Modified Euler method.'''  
Line 324: Line 323:
 
|-
 
|-
  
| 05.02
+
| 05:02
  
 
|We are given a '''function y dash is equal to t plus y plus t y. '''
 
|We are given a '''function y dash is equal to t plus y plus t y. '''
Line 333: Line 332:
 
|-
 
|-
  
| 05.08
+
| 05:08
  
 
| The initial value of '''y''' is '''one'''  
 
| The initial value of '''y''' is '''one'''  
Line 339: Line 338:
 
|-
 
|-
  
| 05.12
+
| 05:12
  
 
| and the '''step length''' is '''zero point zero one.'''  
 
| and the '''step length''' is '''zero point zero one.'''  
Line 345: Line 344:
 
|-
 
|-
  
| 05.16
+
| 05:16
  
 
|We have to find the value of '''y'''  at '''time t equal to zero point one ''' using '''Modified Euler's method.'''  
 
|We have to find the value of '''y'''  at '''time t equal to zero point one ''' using '''Modified Euler's method.'''  
Line 352: Line 351:
  
 
|-
 
|-
| 05.25
+
| 05:25
 
| Let us look at the code for '''Modified Euler method on Scilab Editor'''
 
| Let us look at the code for '''Modified Euler method on Scilab Editor'''
  
 
|-
 
|-
| 05.31
+
| 05:31
 
|We define the '''function''' with '''arguments f, t init, y init, h and n'''  
 
|We define the '''function''' with '''arguments f, t init, y init, h and n'''  
 
|-
 
|-
  
| 05.39
+
| 05:39
  
 
| '''where f''' is the '''function''' to be solved
 
| '''where f''' is the '''function''' to be solved
Line 367: Line 366:
 
|-
 
|-
  
| 05.42
+
| 05:42
  
 
| '''t init''' is the intial '''time''' value,  
 
| '''t init''' is the intial '''time''' value,  
Line 373: Line 372:
 
|-
 
|-
  
| 05.45
+
| 05:45
  
 
| '''y init''' is the inital value of  '''y'''
 
| '''y init''' is the inital value of  '''y'''
Line 379: Line 378:
 
|-
 
|-
  
| 05.49
+
| 05:49
  
 
| '''h''' is the '''step length''' and  
 
| '''h''' is the '''step length''' and  
Line 387: Line 386:
 
|-
 
|-
  
| 05.51
+
| 05:51
  
 
| '''n''' is the number of '''iterations.'''  
 
| '''n''' is the number of '''iterations.'''  
Line 393: Line 392:
 
|-
 
|-
  
| 05.54
+
| 05:54
  
 
| Then we initialize the '''arrays''' for '''y''' and '''t.'''
 
| Then we initialize the '''arrays''' for '''y''' and '''t.'''
 
|-
 
|-
  
| 05.58
+
| 05:58
  
 
|We place the initial values of '''t''' and '''y''' in '''t of one''' and '''y of one''' respectively.  
 
|We place the initial values of '''t''' and '''y''' in '''t of one''' and '''y of one''' respectively.  
Line 404: Line 403:
 
|-
 
|-
  
| 06.07
+
| 06:07
  
 
|We implement '''Modified Euler Method''' here.  
 
|We implement '''Modified Euler Method''' here.  
Line 411: Line 410:
 
|-
 
|-
  
| 06.11
+
| 06:11
  
 
|Here we find the average value of '''y''' at the beginning and end of '''time step.'''  
 
|Here we find the average value of '''y''' at the beginning and end of '''time step.'''  
Line 417: Line 416:
 
|-
 
|-
  
| 06.17
+
| 06:17
  
 
|Save and execute the file '''Modi Euler underscore o d e dot sci.'''  
 
|Save and execute the file '''Modi Euler underscore o d e dot sci.'''  
 
|-
 
|-
  
| 06.23
+
| 06:23
  
 
|Switch to '''Scilab console.'''
 
|Switch to '''Scilab console.'''
Line 428: Line 427:
 
|-
 
|-
  
| 06.26
+
| 06:26
  
 
|Clear the screen by typing '''c l c.'''  
 
|Clear the screen by typing '''c l c.'''  
 
|-
 
|-
  
| 06.30
+
| 06:30
  
 
|Press '''Enter.'''  
 
|Press '''Enter.'''  
Line 440: Line 439:
 
|-
 
|-
  
| 06.32
+
| 06:32
 
|Define the '''function''' by typing '''d e f f open paranthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to t plus y plus t asterisk y close single quote close paranthesis'''  
 
|Define the '''function''' by typing '''d e f f open paranthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to t plus y plus t asterisk y close single quote close paranthesis'''  
  
 
|-
 
|-
  
| 07.01
+
| 07:01
  
 
|Press '''Enter.'''
 
|Press '''Enter.'''
Line 452: Line 451:
 
|-
 
|-
  
| 07.03
+
| 07:03
  
 
|Then type '''t init equal to zero''',  press Enter  
 
|Then type '''t init equal to zero''',  press Enter  
Line 459: Line 458:
 
|-
 
|-
  
| 07.08
+
| 07:08
  
 
|Type '''y init equal to one''' and press '''Enter.'''  
 
|Type '''y init equal to one''' and press '''Enter.'''  
Line 466: Line 465:
 
|-
 
|-
  
| 07.12
+
| 07:12
  
 
|Then type '''h equal to zero point zero one''' press '''Enter.'''  
 
|Then type '''h equal to zero point zero one''' press '''Enter.'''  
Line 472: Line 471:
 
|-
 
|-
  
| 07.19
+
| 07:19
  
 
|Type '''capital N equal to ten.'''  
 
|Type '''capital N equal to ten.'''  
Line 479: Line 478:
 
|-
 
|-
  
| 07.22
+
| 07:22
  
 
|Since the number of '''iterations should be ten to time t equal to zero point one with step length of zero point zero one. '''
 
|Since the number of '''iterations should be ten to time t equal to zero point one with step length of zero point zero one. '''
Line 485: Line 484:
 
|-
 
|-
  
| 07.34
+
| 07:34
  
 
|Press '''Enter.'''
 
|Press '''Enter.'''
Line 491: Line 490:
 
|-
 
|-
  
| 07.36
+
| 07:36
  
 
|Then call the '''function modi euler underscore o d e''' by typing.'''  
 
|Then call the '''function modi euler underscore o d e''' by typing.'''  
Line 497: Line 496:
 
|-
 
|-
  
| 07.41
+
| 07:41
  
 
|'''open square bracket t comma y close square bracket equal to modi euler underscore o d e open paranthesis f comma t init comma y init comma h comma capital N close paranthesis'''  
 
|'''open square bracket t comma y close square bracket equal to modi euler underscore o d e open paranthesis f comma t init comma y init comma h comma capital N close paranthesis'''  
Line 504: Line 503:
 
|-
 
|-
  
| 08.03
+
| 08:03
  
 
|Press '''Enter. '''
 
|Press '''Enter. '''
Line 511: Line 510:
 
|-
 
|-
  
| 08.05
+
| 08:05
  
 
|The value of '''y at t equal to zero point one''' is shown.  
 
|The value of '''y at t equal to zero point one''' is shown.  
Line 517: Line 516:
 
|-
 
|-
  
| 08.10
+
| 08:10
  
 
|Let us summarize this tutorial.  
 
|Let us summarize this tutorial.  
Line 523: Line 522:
 
|-
 
|-
  
| 08.14
+
| 08:14
  
 
|In this tutorial we have learnt to develop Scilab code for '''Euler''' and '''modified Euler methods.'''  
 
|In this tutorial we have learnt to develop Scilab code for '''Euler''' and '''modified Euler methods.'''  
Line 529: Line 528:
 
|-
 
|-
  
| 08.21
+
| 08:21
  
 
|We have also learnt to solve '''ODEs''' using these methods in '''Scilab.'''  
 
|We have also learnt to solve '''ODEs''' using these methods in '''Scilab.'''  
Line 536: Line 535:
  
 
|-
 
|-
|08.28
+
|08:28
 
| Watch the video available at the  link shown below
 
| Watch the video available at the  link shown below
  
 
|-
 
|-
  
| 08.32
+
| 08:32
  
 
| It summarises the Spoken Tutorial project  
 
| It summarises the Spoken Tutorial project  
Line 549: Line 548:
 
|-
 
|-
  
|08.35
+
|08:35
  
 
||If you do not have good bandwidth, you can download and watch it  
 
||If you do not have good bandwidth, you can download and watch it  
Line 555: Line 554:
 
|-
 
|-
  
|08.40
+
|08:40
  
 
||The spoken tutorial project Team
 
||The spoken tutorial project Team
Line 561: Line 560:
 
|-
 
|-
  
|08.42
+
|08:42
  
 
||Conducts workshops using spoken tutorials  
 
||Conducts workshops using spoken tutorials  
Line 568: Line 567:
 
|-
 
|-
  
|08.45
+
|08:45
  
 
||Gives certificates to those who pass an online test  
 
||Gives certificates to those who pass an online test  
Line 575: Line 574:
 
|-
 
|-
  
|08.49
+
|08:49
  
 
||For more details, please write to contact@spoken-tutorial.org  
 
||For more details, please write to contact@spoken-tutorial.org  
Line 582: Line 581:
 
|-
 
|-
  
|08.55
+
|08:55
  
 
|Spoken Tutorial Project is a part of the Talk to a Teacher project  
 
|Spoken Tutorial Project is a part of the Talk to a Teacher project  
Line 590: Line 589:
 
|-
 
|-
  
| 09.00
+
| 09:00
  
 
| It is supported by the National Mission on Eduction through ICT, MHRD, Government of India.  
 
| It is supported by the National Mission on Eduction through ICT, MHRD, Government of India.  
 
|-
 
|-
  
| 09.07
+
| 09:07
  
 
|More information on this mission is available at the link shown below
 
|More information on this mission is available at the link shown below
Line 601: Line 600:
 
|-
 
|-
  
| 09.13
+
| 09:13
  
 
|This is Ashwini Patil signing off.
 
|This is Ashwini Patil signing off.
Line 607: Line 606:
 
|-
 
|-
  
|09.15
+
|09:15
  
 
| Thank you for joining.
 
| Thank you for joining.

Revision as of 10:30, 11 July 2014

Time Narration
00:01 Dear Friends,
00:02 Welcome to the Spoken Tutorial on “Solving ODEs using Euler Methods”
00:09 At the end of this tutorial, you will learn how to:
00:12 Solve ODEs using Euler and Modified Euler methods in Scilab
00:18 Develop Scilab code to solve ODEs
00:22 To record this tutorial, I am using
00:25 Ubuntu 12.04 as the operating system


00:28 and Scilab 5.3.3 version
00:32 To practise this tutorial, a learner
00:34 should have basic knowledge of Scilab
00:37 and should know how to solve ODEs.
00:40 To learn Scilab, please refer to the relevant tutorials available on the Spoken Tutorial website.
00:48 In Euler method, we get an accurately approximate solution of the ODE.
00:55 It is used to solve initial value problems where initial values of the differential equation are given.
01:03 It can be used to solve continuous functions.
01:08 Let us solve an example using Euler method.
01:12 We are given an initial value problem -
01:15 y dash is equal to minus two t minus y.


01:20 The initial value of y is given as minus one
01:25 and the step length is given as zero point one.


01:29 We have to find the value of y at time t equal to zero point five.
01:36 Let us look at the code for Euler method.


01:39 Open Euler underscore o d e dot sci on Scilab editor.
01:47


We define the function Euler underscore o d e with arguments f, t init, y init, h and n


01:58 'where f denotes the function to be solved,


02:01 t init is the initial value of time t,
02:05 y init is the initial value of y
02:09 h is the step length, and n is the number of iterations.
02:14 Then we initialize the values of t and y to vectors of zeros.
02:21 We place the initial values of t and y in t of one and y of one respectively.
02:29 Then we iterate from one to N to find the value of y.
02:33 Here we apply Euler method to find the value of y.
02:39 Finally we end the function.
02:42 Save and execute the file Euler underscore o d e dot sci


02:49 Switch to Scilab console to solve the example problem.


02:54 We define the function by typing


02:56 d e f f open paranthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to open paranthesis minus two asterisk t close paranthesis minus y close single quote close paranthesis


03:26 Press Enter.
03:28 Then type t init is equal to zero.


03:31 Press Enter.



03:33 Type y init is equal to minus one.

'


03:38 Press Enter


03:40 Type step length h is equal to zero point one.


03:44 Press Enter


03:46 The step length is zero point one, and we have to find the value of y at zero point five.


03:53 So, the number of iterations should be five.


03:59 At each iteration, the value of t will be increased by zero point one.


04:05 So type capital N is equal to five.



04:09 And press Enter.


04:11 To call the function, type
04:14 open square bracket t comma y close square bracket equal to Euler underscore o d e open paranthesis f comma t init comma y init comma h comma capital N close paranthesis
04:33 Press Enter.


04:35 The value of y at t equal to zero point five is shown.
04:41 Now let us look at Modified Euler method.
04:45 It is a second order method and is a stable two step method.


04:51 We find the average of the function at the beginning and end of time step.


04:56 Let us solve this example using Modified Euler method.


05:02 We are given a function y dash is equal to t plus y plus t y.



05:08 The initial value of y is one
05:12 and the step length is zero point zero one.
05:16 We have to find the value of y at time t equal to zero point one using Modified Euler's method.


05:25 Let us look at the code for Modified Euler method on Scilab Editor
05:31 We define the function with arguments f, t init, y init, h and n
05:39 where f is the function to be solved


05:42 t init is the intial time value,
05:45 y init is the inital value of y
05:49 h is the step length and


05:51 n is the number of iterations.
05:54 Then we initialize the arrays for y and t.
05:58 We place the initial values of t and y in t of one and y of one respectively.
06:07 We implement Modified Euler Method here.


06:11 Here we find the average value of y at the beginning and end of time step.
06:17 Save and execute the file Modi Euler underscore o d e dot sci.
06:23 Switch to Scilab console.
06:26 Clear the screen by typing c l c.
06:30 Press Enter.


06:32 Define the function by typing d e f f open paranthesis open single quote open square bracket y dot close square bracket equal to f of t comma y close single quote comma open single quote y dot equal to t plus y plus t asterisk y close single quote close paranthesis
07:01 Press Enter.


07:03 Then type t init equal to zero, press Enter


07:08 Type y init equal to one and press Enter.


07:12 Then type h equal to zero point zero one press Enter.
07:19 Type capital N equal to ten.


07:22 Since the number of iterations should be ten to time t equal to zero point one with step length of zero point zero one.
07:34 Press Enter.
07:36 Then call the function modi euler underscore o d e by typing.
07:41 open square bracket t comma y close square bracket equal to modi euler underscore o d e open paranthesis f comma t init comma y init comma h comma capital N close paranthesis


08:03 Press Enter.


08:05 The value of y at t equal to zero point one is shown.
08:10 Let us summarize this tutorial.
08:14 In this tutorial we have learnt to develop Scilab code for Euler and modified Euler methods.
08:21 We have also learnt to solve ODEs using these methods in Scilab.


08:28 Watch the video available at the link shown below
08:32 It summarises the Spoken Tutorial project


08:35 If you do not have good bandwidth, you can download and watch it
08:40 The spoken tutorial project Team
08:42 Conducts workshops using spoken tutorials


08:45 Gives certificates to those who pass an online test


08:49 For more details, please write to contact@spoken-tutorial.org


08:55 Spoken Tutorial Project is a part of the Talk to a Teacher project


09:00 It is supported by the National Mission on Eduction through ICT, MHRD, Government of India.
09:07 More information on this mission is available at the link shown below
09:13 This is Ashwini Patil signing off.
09:15 Thank you for joining.

Contributors and Content Editors

Gaurav, PoojaMoolya, Sandhya.np14